1. (5pts) Evaluate the determinant by any (efficient) method:
$\left|\begin{array}{rrrrr}3 & 2 & 3 & -1 & -4 \\ 4 & 7 & 2 & 3 & 15 \\ 0 & 0 & 2 & 5 & 2 \\ 0 & 0 & -4 & -3 & 0 \\ 0 & 0 & 2 & -1 & 4\end{array}\right|=$
2. (3pts) If $\operatorname{det} A=-5$ and A is a 2×2 matrix, find:
$\operatorname{det} A^{-1}=$
$\operatorname{det}(3 A)=$
$\operatorname{det} A^{4}=$
3. (6 pts) Let $A \mathbf{x}=\mathbf{b}$ be a linear system whose solution is given below (A is a 2×4 matrix).
a) Write any two solutions of the system.
b) Write the general solution of the system $A \mathbf{x}=\mathbf{0}$.
c) State the vectors that span the solution space of $A \mathbf{x}=\mathbf{0}$.

$$
\begin{array}{rrrr}
x_{1}= & 3-2 s & +4 t \\
x_{2}= & 7+3 s & \\
x_{3}= & -1+8 s & -7 t \\
x_{4}= & -5 s & +t
\end{array}
$$

4. (6pts) Determine whether the vectors $(1,3,2),(-2,0,7)$ and $(5,3,-12)$ are linearly independent. Then draw a picture of these vectors that captures their relative positions to one another. Do not pay attention to actual coordinates.
5. (6 pts) The matrix A is given below.
a) Find the eigenvalues for the matrix.
b) For each eigenvalue, find a corresponding eigenvector.
$A=\left[\begin{array}{rr}3 & 1 \\ -1 & 5\end{array}\right]$
6. (4pts) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the rotation about the origin by 120°.
a) Write the standard matrix of this transformation.
b) Find $T(1,3)$.
7. (7pts) Write the standard matrices for the following linear operators.
a) $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}, T$ dilates by 4 in the x-direction, then reflects in the line $y=x$.
b) $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}, T$ rotates about the positive z-axis by 90°, then reflects in the $x z$-plane.
8. (4pts) Show that the set of vectors of form $(a, b, 3 a-2 b)$ is a subspace of \mathbf{R}^{3}.
9. (9pts) Are the following statements true or false? Justify your answer by giving a logical argument or a counterexample.
a) If $\operatorname{det} A=0$, then $\lambda=1$ cannot be an eigenvalue of A.
b) If A is orthogonal, then $\operatorname{det} A \neq 0$.
c) If $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear operator, then $T(\mathbf{x} \cdot \mathbf{y})=\mathbf{x} \cdot \mathbf{y}$ for every \mathbf{x}, \mathbf{y} in \mathbf{R}^{2}.

Bonus. (5pts) Show that
$\left|\begin{array}{lll}1 & x & x^{2} \\ 1 & y & y^{2} \\ 1 & z & z^{2}\end{array}\right|=(y-x)(z-x)(z-y)$

