Calculus 1 - Exam 7

MAT 250, Spring 2011 - D. Ivanšić

Name:
Show all your work!

Find the following antiderivatives.

1. (4pts) $\int \cos \left(5 x-\frac{\pi}{2}\right) d x=$
2. (7pts) $\int\left(x^{3}-4 x\right) \sqrt{x} d x=$
3. $(5 \mathrm{pts}) \int \frac{1}{1+(3 x)^{2}}, d x=$
4. (16pts) Find $\int_{-1}^{3}|x| d x$ in two ways (they'd better give you the same answer!):
a) Using the "area" interpretation of the integral. Draw a picture.
b) Using the Fundamental Theorem of Calculus (you will have to break it up into two integrals).
5. (6pts) Write in sigma notation.
$\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\frac{5}{6}=$

Use the substitution rule in the following integrals:
6. $(9 \mathrm{pts}) \int \frac{4 x^{3}+14 x}{\sqrt[5]{x^{4}+7 x^{2}+9}} d x=$
7. (10pts) $\int_{\ln 3}^{\ln 5} \frac{e^{x}}{\left(7+e^{x}\right)^{2}} d x=$
8. (6pts) $\int_{0}^{4} \frac{x-2}{\sin \left(x^{2}-4 x+7\right)} d x=$
9. (8pts) A rocket shoots up vertically with velocity $v(t)=5 t^{3}+4 t^{2}$ (in meters/second). Find its position function $s(t)$, if at time $t=6$, the rocket is at altitude 1800 m .
10. (21pts) The function $f(x)=e^{x}, 0 \leq x \leq 3$ is given.
a) Write down the expression that is used to compute M_{6}. Then compute M_{6}.
b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does M_{6} represent?
c) Using the Fundamental Theorem of Calculus, evaluate $\int_{0}^{3} e^{x} d x$. Is M_{6} an overestimate or an underestimate of this integral?
11. (8pts) Show that $\frac{\pi}{3} \leq \int_{\frac{\pi}{6}}^{\frac{5 \pi}{6}} \sin x d x \leq \frac{2 \pi}{3}$ without evaluating the integral.

Bonus. (10pts) The rate at which money flows in or out of a company's account is given by the formula $3 t^{2}-48$ dollars/day, $0 \leq t \leq 30, t$ in days. At time $t=0$, there was $\$ 800$ in the account.
a) When is the company losing money from the account, and when is it gaining money?
b) By how much did the amount in the account increase or decrease from $t=0$ to $t=6$?
c) How much money is in the account when $t=6$?

