Calculus 1 - Exam 4
 MAT 250, Spring 2011 - D. Ivanšić

Name:
Show all your work!
Differentiate and simplify where appropriate:

1. $(4 \mathrm{pts}) \frac{d}{d x} \sqrt{x^{3}-4 x^{2}+1}=$
2. (6pts) $\frac{d}{d x} e^{3 x} \sin 5 x=$
3. $(7 \mathrm{pts}) \frac{d}{d u} e^{\frac{1}{u^{2}+5 u}}=$
4. (8pts) $\frac{d}{d x} \ln \frac{x^{2}+1}{(x+4)^{2}}=$
5. $(6 \mathrm{pts}) \frac{d}{d y} 7^{7^{y}}=$
6. (9pts) $\frac{d}{d x} \frac{\arccos x}{\sqrt{1-x^{2}}}=$
7. (12pts) Use implicit differentiation to find the equation of the tangent line to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{4}=1$ at the point $\left(\sqrt{5}, \frac{4}{\sqrt{5}}\right)$. Draw the picture of the ellipse and the tangent line.
8. (10pts) Use implicit differentiation to find y^{\prime}.
$x^{4}+y^{4}=\frac{x}{y}$
9. (10pts) Use logarithmic differentiation to find the derivative of $y=(\arctan x)^{x}$.
10. (12pts) Let $f(x)=x^{2}-4 x, x \geq 2$, and let g be the inverse of f. Use the theorem on derivatives of inverses to find $g^{\prime}(12)$.
11. (16pts) A workers' platform raises as point B is pulled by a chain towards the stationary point A (circles denote rotating joints). If the diagonal beams are 5 meters long, and B is pulled towards A at rate 2 meters per minute, at what rate is the top of the platform rising when B is 3 meters away from A ? What are the units? (Hint: use a triangle.)

Bonus. (10pts) In the previous problem let θ be the angle between either of the diagonal beams and the horizontal. Find how fast θ is increasing at the moment described above.

