Calculus 1 - Exam 2
MAT 250, Spring 2011 - D. Ivanšić

1. (17pts) Differentiate and simplify where appropriate:
$\frac{d}{d x}\left(4 x^{3}-\frac{3}{x^{6}}+\sqrt[3]{x^{13}}+4^{5}\right)=$
$\frac{d}{d x}\left((\sqrt{x}+7)\left(3 \sqrt[4]{x}-x^{2}\right)\right)=$
$\frac{d}{d y}\left(4 e^{y}+3 e^{4}\right)=$
2. (10pts) Use the Intermediate Value Theorem to show that the equation $\cos x=x-1$ has at least one solution. Write a nice sentence that shows how you are using the IVT.
3. (22pts) Find the following limits algebraically.
$\lim _{x \rightarrow-4} \frac{x^{2}-3 x-28}{x^{2}-16}=$
$\lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{x-1}=$
$\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\sin (5 x)}=$
4. (10pts) Find $\lim _{x \rightarrow 0} x^{2}\left(\sin \frac{1}{x}+\cos \frac{1}{x}\right)$. Use the theorem that rhymes with what you pay at the bursar's office, other than tuition.
5. (15pts) The graph of the function $f(x)$ is shown at right.
a) Find the points where $f^{\prime}(a)$ does not exist.
b) Use the graph of $f(x)$ to draw an accurate graph of $f^{\prime}(x)$.
c) Is $f(x)$ odd or even? How about $f^{\prime}(x)$?

6. $(16 \mathrm{pts})$ Let $f(x)=\frac{1}{x^{2}}$.
a) Use the limit definition of the derivative to find the derivative of the function.
b) Check your answer by taking the derivative of f using rules.
c) Write the equation of the tangent line to the curve $y=f(x)$ at point $\left(2, \frac{1}{4}\right)$.
7. (10pts) Consider the limit below. It represents a derivative $f^{\prime}(a)$.
a) Find f and a.
b) Use the infomation above to find the limit.
$\lim _{h \rightarrow 0} \frac{\sqrt[3]{8+h}-2}{h}$

Bonus. (10pts) Use the limit definition of the derivative to find the derivative of the function $f(x)=\frac{x^{2}}{x+3}$.

