Mathematical Concepts — Joysheet 9 MAT 117, Spring 2012 — D. Ivanšić

Saul Ocean Name:

Final answers should have accuracy to 6 decimal places (or 4 decimal places for table-derived answers). Show some work how the mean and standard deviation are computed. Giving only the answer will bring you few points.

- (18pts) A survey was conducted to determine how often students go home during the weekend over the course of a semester (among those who don't live at home). The number of visits is recorded below.
- a) Find the range of the number of visits.
- b) Find the mean of the number of visits.
- c) Find the standard deviation of the number of visits.

Number of visits	Frequency (students)	a) 8-1=7
1	5	e) 1.5+2.7+3.12++8.4 = 297 = 4.304398
2	7	5+7+12+-+4 69
3	12	2+1+15
4	13	2 2 22 12 12 12 12
4 5 6	15	c) $5(1-4.30_{-})^{2}+7(2-4.30_{-})^{2}++4(9-4.30_{-})^{2}=234.60_{-}$
6	8	() 2(1 (1) 2) 1 (0 (1) 1)
7	5	
8	4	
	69	$S = \sqrt{\frac{234.60}{68}} = 1.857452$

(10pts) The amount paid for a certain type of car is normally distributed with mean \$22,000 and standard deviation \$1,000. Use the 68-95-99.7 rule (draw a picture) to find the percentage of buyers who paid:

Area =
$$\frac{0.95}{2}$$
 = 0.475 47.5%

c) over \$23,000

d) between \$19,000 and \$21,000

Area =
$$\frac{0.997}{2}$$
 - 0.34 = 0.4985 - 0.34
= 0.1585
15.85%

3. (6pts) A set of data items is normally distributed with mean 45 and standard deviation 3.4. Find the data items that correspond to the z-scores given below.

a)
$$z = 0$$

b) $z = 1.3$
c) $z = -2.2$
 $\chi = 45 + (-2.2) \cdot 3.4$
 $(-2.2) \cdot 3.4$

4. (4pts) John scored 34 points on an exam with mean 30 and standard deviation 3 and Jay scored 77 points on a similar exam with mean 70 and standard deviation 6. Use z-scores to determine who did better.

John's
$$z = \frac{34-30}{3} = \frac{4}{5} = 1.333 = \frac{4}{5} = 1.333 = \frac{4}{5} = 1.333 = \frac{4}{5} = 1.16666$$

- 5. (22pts) A baker knows that the daily demand for apple pies normally distributed with mean 42.5 pies and standard deviation 4.6 pies. Draw a picture showing which area you are computing as you answer:
- a) On what percentage of days is the demand less than 45 pies?
- b) On what percentage of days is the demand greater than 44 pies?
- c) What is the percentile of the daily demand of 40 pies? What does this mean?
- d) What is the probability that on a random day the demand is between 38 and 44 pies?

