Mathematical (Concepts	— Exam 1
MAT 117, Spri	ng 2012 -	 D. Ivanšić

Name: Saul Ocean

Show all your work!

$$I = Prt \ A = P(1+rt) \quad A = P\left(1+\frac{r}{n}\right)^{nt} \quad A = P\frac{\left(1+\frac{r}{n}\right)^{nt}-1}{\frac{r}{n}} \quad P = PMT\frac{1-\left(1+\frac{r}{n}\right)^{-nt}}{\frac{r}{n}} \quad Y = \left(1+\frac{r}{n}\right)^{n}-1$$

$$A=PB$$
 $12=P\cdot25$ $P=\frac{12}{25}=0.48$ 48%

$$7 = 0.64 \cdot B$$

$$0 = \frac{7}{0.64} = 10.9375$$

2. (10pts) You borrowed \$400 from a friend, and repaid him in 5 months with \$450. What simple annual interest rate did you pay on this loan?

$$A = P(1+rt)$$

$$450 = 400(1+r(\frac{5}{12})) + 400$$

$$1.125 = 1+r(\frac{5}{12}) - 1$$

3. (8pts) How much should you deposit in an account bearing 3.47%, compounded semi-annually, if you would like to have \$4,000 in three years?

Round up to

\$ 3607.77

 (14pts) In 2010, single man Fidelio filed income taxes His total income was \$85,300, he deposited \$5000 into a retirement account, paid \$7400 in mortgage interest, \$2100 in property taxes, \$3900 in state income taxes and donated \$750 to charity. Use the table below to first determine Fidelio's taxable income (don't forget the exemption) and then find the tax on this income.

Income bracket	Tax rate	Total subtractions:
up to \$8,375 \$8,376-\$34,000	10% 15%	5000+7400+2100+3900+750+3650
\$34,001-\$82,400 \$82,401-\$171,850	25% 28% 33%	= 22,800 Taxable income = 85,300 - 22,800
\$171,851-\$373,650 more than \$373,650	35%	
exemption Tax on 62,5	\$3650 \$3650	= 62,500 25,625 2,625 2,625 2,625 2,500 2,500 3,4000 2,500 2,500 3,4000
		$= 837.50 + 3843.15 + 7125$ $= 11.806.25 \leftarrow tax$

- (14pts) You would like to save up for a nice new computer.
- a) How much should you deposit every day into an account with 3.5% interest, compounded daily, in order to have \$2,500 in three years?
- b) How much of the final amount is from deposits and how much from interest?

b) How much of the final amount is from deposits and how much from interest?

a)
$$A = P = \frac{\left(1 + \frac{r}{u}\right)^{u+} - 1}{\frac{\pi}{365}}$$
 $2500 = P = \frac{\left(1 + \frac{\sigma}{365}\right)^{365 \cdot 3} - 1}{\frac{\sigma_{1}\sigma_{3}\sigma_{5}}{365}}$
 $2500 = P = \frac{1154.4952}{1154.4952}$
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1095
 1

(32pts) True story: in an attempt at reducing Demi's anger at his indiscretions, Ashton bought her a very nice car for \$103,000. Made-up part: for this he took on a 7-year loan at 5.25%, compounded monthly.

a) What is his monthly payment on the loan?

- b) What are his total payments over the course of the loan? How much of this amount is for interest?
- c) How much of his first payment goes toward interest, and how much towards the principal?

d) How much does he owe after 3 years?

d) How much does he owe after 3 years?

a)
$$P = PMT = \frac{1 - (1 + \frac{1}{4})^{-1}}{\frac{1}{4}}$$

84

103,000 = $PMT = \frac{1 - (1 + \frac{0.0525}{12})^{-12.7}}{\frac{0.0525}{12}}$

103,000 = $PMT = \frac{1 - (1 + \frac{0.0525}{12})^{-12.7}}{\frac{0.0525}{12}}$

PMT = $\frac{103,000}{70.167} = 1467,92$

a) Total Pagments

= $12.7.1467.92 = 123,305.28$

Total = $123,305.28 - 103,000$

integer

= 20,305.28

c)
$$I = Prt$$

$$= 103,000 \cdot 0.0525 \cdot \frac{1}{12}$$

$$= 450.63 \leftarrow towards$$

$$= 1017.29$$

$$= 1467.92 - 450.63 = 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1017.29$$

$$= 1$$

7. (12pts) If you deposit \$2000 into an account bearing 11% interest, compounded quarterly, how long will it take until you have \$6000 in the account?

$$A = P(1 + \frac{x}{u})^{ut}$$

$$6000 = 2000 (1 + \frac{0.11}{4})^{4.t} | -\frac{1}{2000}$$

$$3 = (1.0275)^{4t} | log - log (1.0275)^{4t}$$

$$log 3 = log (1.0275)^{4t}$$

$$log 3 = 4t log (1.0275) | -\frac{1}{4} log (1.0275)$$

$$t = \frac{log 3}{4 log (1.0275)} = 10.12 years$$

Bonus. (10pts) In an effort to save for a down payment on a home, Maria deposits \$3000 into an account, bearing 4.5%, compounded monthly. Her financial situation does not allow her to make any additional deposits for a year. Then, after getting a promotion at work, she starts making monthly deposits of \$200 for the next two years into the same account. How much is in the account in three years from now?

Think of this as two accounts:

1) single dejiest of 3000 for 3 years
$$\longrightarrow$$
: $A = P(1+\frac{\pi}{1})^{\frac{1}{2}} = 3000 \left(1+\frac{0.045}{12}\right)^{12.3}$

2) a series of dejiest of 300 for two years = 3000, 1.144.

$$A = P \frac{(1+\frac{\pi}{1})^{\frac{1}{2}} - 1}{\frac{\pi}{12}} = 3432.74$$

$$= 200 \cdot \frac{(1+\frac{0.045}{12})^{12.2} - 1}{\frac{0.045}{12}} = 3432.74 + 5012.81 = 8445.55$$

$$= 200 \cdot 25.06.$$

$$= 5012.81$$