1. (8pts) Evaluate without using the calculator:

 $\log_5 25 = \log_{1000} 10 = \log_c \sqrt[6]{c^7} = \log_{25} 125 = (\text{think}_{root})$

2. (4pts) Use your calculator to find $\log_7 3$ with accuracy 4 decimal places. Show how you obtained your number.

3. (13pts) Write as a sum and/or difference of logarithms. Express powers as factors. Simplify if possible.

 $\log((4y+1)^5\sqrt[3]{5x-6}) =$

$$\log_8\left(\frac{\sqrt{y^3}}{64x^7}\right) =$$

4. (13pts) Write as a single logarithm. Simplify if possible. $4 \log(2x^3) - 3 \log(4x^5) =$

 $3\ln(x^2 - x - 30) + \ln(x + 5) - 2\ln(x - 6) =$

5. (8pts) How much should you invest in an account bearing 4.25%, compounded quarterly, if you wish to have \$4,000 in four years?

6. (8pts) Draw the graphs of the exponential function $f(x) = b^x$ for 0 < b < 1 and for b > 1. What is the range in both cases?

7. (12pts) Let $f(x) = -\log_2(x-3)$.

a) What is the domain of f?

b) Use transformations to draw the graph of f, starting with the graph of $y = \log_2 x$. Indicate the *x*-intercept and any asymptotes.

Solve the equations.

8. (8pts)
$$3^{x+2} = \left(\frac{1}{9}\right)^{2-x}$$

9. (12pts)
$$\log_9(x+6) + \log_9(x+4) = \log_9(3x+12)$$

10. (14pts) Five years ago, the population of Bunny City was 45,000, today, it is 57,000. Assume that the population grows according to the usual formula $N(t) = N_0 e^{rt}$. a) Find the growth rate r and write the function that describes the population of B.C. b) If the city continues to grow at the same rate, what will be its population four years from now?

Bonus (10pts) What is a better deal: a savings account with a 4% interest rate, compounded monthly, or a savings account with a 4.125% interest rate, compounded quarterly? *(Hint: compare them over one year.)*