Mathematical Concepts - Joysheet 4 MAT 117, Fall 2012 - D. Ivanšić

This is an exercise in computing the payment on a hypothetical loan and comparing it with the numbers that financial services websites give you. Do the following:

1. (4pts) Decide on an amount and purpose for a hypothetical loan (e.g. buying a car, house, starting a business, etc.) Choose over how many years it should be repaid. Standard choices for each category are suggested: $15,20,30$ years for a home, $3,4,5$ years for a car, etc.

$$
\begin{aligned}
& \text { Refinance a } \$ 160,000 \text { mastgase } \\
& \text { ass } 20 \text { years, inter rate } 3.75 \%
\end{aligned}
$$

2. (14pts) Find a financinal services website (bank, mortgage originator) that gives you interest rate quotes for the kind of loan that you chose and computes the monthly payment based on a loan amount. Use their computation to find the monthly payment on your hypothetical loan. Don't use a website with a "generic" calculator such as bankrate.com, rather, find one that offers actual loans with current interest rates. Print out the webpage, showing loan amount, term, interest rate and payment and attach it to this one. Try to keep it to just one sheet.

(Attachment)

3. (12pts) Using our loan formula from 8.5 , compute (write the computation here) the monthly payment on your hypothetical loan. Use the interest rate that you found on the website. The frequency of compounding is typically monthly. Does your number agree with the information on the website you found?

$$
\begin{aligned}
& P=P_{M T} \frac{1-\left(1+\frac{r}{n}\right)^{-4 t}}{\frac{r}{4}} \\
& 160000=\operatorname{PMT} \frac{1-\left(1+\frac{0.0375}{12}\right)^{-12.20}}{\frac{0.0375}{12}} \\
& 160,000=\text { MT } 167,66 \ldots \\
& \text { MT }=\frac{160,000}{168.66 \ldots}=948.62, \text { ament aras with website }
\end{aligned}
$$

4. (14pts) Find the balance of the hypothetical loan after two thirds of all payments have been made.

$$
\begin{aligned}
& P=\operatorname{PMT} \frac{1-\left(1+\frac{r}{n}\right)^{-4 t}}{\frac{r}{4}} \begin{aligned}
& P=948.62 \cdot \frac{1-\left(1+\frac{0,0375}{12}\right)^{-12} \cdot \frac{20}{3}}{\frac{\gamma}{4}} \\
& \begin{aligned}
\text { dive remanding }
\end{aligned} \\
&=948.62 \cdot 70.68 \ldots \\
&=67,054.71 \text { is the balance after } 160 \text { paynats }\left(\frac{2}{3} \text { of } 240\right)
\end{aligned}
\end{aligned}
$$

5. (16pts) Write an amortization schedule for the four payments after two thirds of all payments have been made. (For example, if it's a 60 -month loan, consider payments 41,42 , 43 and 44.)
\qquad

payment no to. interest to. principal balcuce			
160			$67,054.71$
161	209.55	739,07	$66,315.64$
162	207.24	741.38	$65,574.26$
163	204.92	743.70	$64,830.56$
164	202.60	746.02	$64,084.54$

Calculatia: $\quad 67,054.71 \cdot 0,0375 \cdot \frac{1}{12}=209.55$
For pageant $161:$

$$
\begin{aligned}
948.62-209.55 & =739.07 \\
67,054.71-739.07 & =66,315.64 \mathrm{etc} .
\end{aligned}
$$

[^0] -

-

[^0]: by

 #### Abstract

