MAT 117 Spring 2012 — D. Ivanšić
WAI III, Spring 2012 D. Ivanste
$\frac{a}{b} = \frac{(E)}{1 - P(E)} \qquad P(E) = \frac{a}{a + b} \text{ where odds in favor of } E \text{ are } a : b \qquad P(B \mid A) = \frac{n(A \text{ and } B)}{n(A)}$
P(A or B) = P(A) + P(B) - P(A and B)
P(A or B) = P(A) + P(B) (if A and B are mutually exclusive)
$P(A \text{ and } B) = P(A) \cdot P(B \mid A)$ $P(A \text{ and } B) = P(A) \cdot P(B) \text{ if } A \text{ and } B \text{ are independent}$
$E = P_1 \cdot A_1 + P_2 \cdot A_2 + \dots + P_n \cdot A_n$

1. (6pts) In a restaurant, there are 17 choices for appetizers, 43 for the main dish and 13 for dessert. Given these choices, how many different three-course meals could you have?

2. (6pts) A die is rolled four times. How many different outcomes does this experiment have?

3. (14pts) The table shows the pattern of mammography results and breast cancer rates among a number of U.S. women ages 40–50. Assuming the numbers are representative for the general population, what is the probability that a random U.S. woman between the ages of 40 and 50:

- a) has breast cancer?
- b) had a positive mammogram?
- c) does not have breast cancer and had a positive mammogram?
- d) has breast cancer, given her mammogram is positive?
- e) doesn't have breast cancer, given her mammogram is negative?
- f) has a negative mammogram, given that she has breast cancer?

	Cancer	No Cancer	Total
Positive mammo.	720	6,944	
Negative mammo.	80	$92,\!256$	
Total			

4. (18pts) Write the probabilities and odds against and in favor of the following events (you can show any work needed below):

	Event	probability	odds against	odds in favor
a)	Rolling a 4 on a single roll of a die			
b)	Drawing a red face card from a deck of cards			
c)	Getting at least one tail on three coin tosses			
d)	Getting sum 7 or 8 on a roll of two dice			
e)	Both numbers odd on a roll of two dice			

5. (14pts) A spinner has 8 equal-size fields, one of which is labeled W, two are labeled I and five are labeled N. A game of chance is set up like this: the player pays \$5 and spins. Depending on whether the spinner lands on W, I or N the player wins \$15, \$7 or nothing, respectively.

- a) Find the expected value of this game.
- b) What is the fair price of this game?
- c) If a player played this game 100 times, how much would they expect to win or lose?

6. (10pts) In the ice cream bin of a convenience store, 66% of the products contain vanilla, 47% contain chocolate, and 31% have both of those ingredients. If an ice cream product is selected at random, what is the probability that:

a) it contains vanilla or chocolate?

b) it lacks at least one of those ingredients?

7. (14pts) A picky music lover browsing through an online music store finds that, in his opinion, 65% of the tracks there suck. Choosing tracks randomly, what is the probability that he will select

a) on two tries, both tracks that don't suck?

- b) on three tries, all three tracks that suck?
- c) on four tries, at least one track that doesn't suck?

8. (18pts) An animal shelter has 7 black kittens, 4 calicos and 5 grey kittens. If you pick two kitties at random, what is the probability that: a) both are calicos?

- b) the first is black and the second is gray?
- c) exactly one is grey?

Bonus. (10pts) Two cards are drawn from a deck at random. What is the probability that the first one is a face card and the second one is a club? *Hint: this will help you somewhere in the problem: if B and C are mutually exclusive,* P(B or C | A) = P(B | A) + P(C | A).