Find the following antiderivatives.

1. (4pts) $\int 4 x^{2}-3 \sqrt{x} d x=$
2. (4pts) $\int e^{3 x+1} d x=$
3. (4pts) $\int \sec (4 x) \tan (4 x) d x=$
4. (15pts) Find $\int_{-2}^{2} x-1 d x$ in two ways (they'd better give you the same answer!):
a) Using the "area" interpretation of the integral. Draw a picture.
b) Using the Fundamental Theorem of Calculus.
5. (6pts) Write in sigma notation.
$\frac{2}{3}+\frac{4}{9}+\frac{6}{27}+\frac{8}{81}+\frac{10}{243}=$
6. (10pts) Evaluate the definite integral:
$\int_{1}^{4} \frac{x^{2}-1}{\sqrt{x}} d x=$

Use the substitution rule in the following integrals:
7. (9pts) $\int\left(6 x^{2}-4 x\right)\left(x^{3}-x^{2}+2\right)^{5} d x=$
8. (10pts) $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{\tan ^{7} x} d x=$
9. (8pts) Find the function f if $f^{\prime}(x)=\frac{5}{x^{4}}-\frac{3}{x}$, and $f(1)=7$.
10. (22pts) The function $f(x)=\cos x, 0 \leq x \leq \frac{\pi}{2}$ is given.
a) Write down the expression that is used to compute R_{4}. Then compute R_{4}.
b) Illustrate with a diagram, where appropriate rectangles are clearly visible. What does R_{4} represent?
c) Is R_{4} an overestimate or an underestimate of the area?
d) Using the Fundamental Theorem of Calculus, evaluate $\int_{0}^{\frac{\pi}{2}} \cos x d x$. What is the error of R_{4} ?
11. (8 pts) Show that $0.82 \leq \int_{1}^{1.3} e^{x^{2}} d x \leq 1.63$. (Note: the antiderivative of $e^{x^{2}}$ cannot be found among elementary functions, so don't try to do it by evaluating the integral.)

Bonus. (10pts) The gist of section 5.5 is this:
\int_{a}^{b} rate of change of $F=$ change of F from a to b. In other words, $\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)$.
Use the fact above to solve the following problem. Water flows in and out of a tank at rate $3-\frac{1}{2} t$ liters/minute. There were 5 liters of water in the tank at time $t=0$.
a) By how much does the amount of water in tank change from $t=0$ to $t=4$?
b) How much water is in the tank at time $t=4$?
c) By how much does the amount of water in tank change from $t=4$ to $t=10$?
d) How much water is in the tank at time $t=10$?

