Find the limits. You may use L'Hopital's rule.

1. $(10 \mathrm{pts}) \lim _{x \rightarrow \infty} \frac{x^{2}+3 x-7}{e^{x}}=$

Which grows faster, $x^{2}+3 x-7$ or e^{x} ?
2. (8pts) $\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}}=$
3. (10pts) $\lim _{x \rightarrow 0+} \sqrt[5]{x} \ln x=$
4. $(10 \mathrm{pts}) \lim _{x \rightarrow \infty} x^{\frac{1}{x}}=$
5. (32pts) Let $f(x)=\ln \left(x^{2}+9\right)$. Draw an accurate graph of f by following the guidelines.
a) Find the intervals of increase and decrease, and local extremes.
b) Find the intervals of concavity and points of inflection.
c) Find $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
d) Use information from a)-d) to sketch the graph
6. (8pts) Find the limit without using L'Hopital's rule.
$\lim _{x \rightarrow \infty} \frac{5 x^{2}-3 x+1}{2 x^{2}-x+2}=$
7. (22pts) A square piece of cardboard has side length 4 ft . Four equal-size square pieces are cut from the corners to produce a cross-like shape, whose "flaps" are lifted up to form a box without a top. Find the size of the cutout that produces the box with the largest volume.

Bonus. (10pts) Draw a line of negative slope through the point (2,3). Along with the axes, this line forms a right triangle in the first quadrant. Among all triangles obtained in this way, find the one with the smallest area.

