Differentiate and simplify where appropriate:

1. $(5 \mathrm{pts}) \frac{d}{d x} \ln \left(x^{2}-3 x+1\right)=$
2. $(5 \mathrm{pts}) \frac{d}{d \theta} 5^{\sin \theta}=$
3. (6pts) $\frac{d}{d x} x^{2} \arcsin x=$
4. $(9 \mathrm{pts}) \frac{d}{d x} \ln \frac{(x+1)^{2}}{(3 x-2)^{4}}=$
5. $(9 \mathrm{pts}) \frac{d}{d t} \arctan \left(\frac{t^{2}-1}{t}\right)=$
6. (12pts) Use implicit differentiation to find the equation of the tangent line to the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at the point $\left(-2, \frac{3 \sqrt{3}}{2}\right)$. Draw the picture of the ellipse and the tangent line.
7. (10pts) Use implicit differentiation to find y^{\prime}.
$x e^{y}=\frac{x}{y}$
8. (8pts) Use logarithmic differentiation to find the derivative of $y=x^{\cos x}$.
9. (10pts) Let $f(x)=x^{3}+2 x^{2}+5 x$, and let g be the inverse of f. Use the theorem on derivatives of inverses to find $g^{\prime}(8)$.
10. (10pts) Find all points on the graph of $3 x^{2}+4 y^{2}+3 x y=24$ where the tangent line is horizontal.
11. (16pts) Somewhere on campus, a spotlight is shining on a wall 40 ft away. Seven-foot tall Dunker is walking from the spotlight toward the wall at rate $4 \mathrm{ft} / \mathrm{second}$. How fast is the height of Dunker's shadow on the wall changing when Dunker is 30ft away from the spotlight? What are the units?

Bonus. (10pts) Let $f(\theta)=\sec \theta$, and let g be the inverse of f. Use the theorem on derivatives of inverses to find the general expression for $g^{\prime}(x)$. (A triangle with θ and x will help you.)

