1. (4pts) Sketch the points in the plane with polar coordinates:
(1, $\frac{2 \pi}{3}$)
$\left(-2, \frac{\pi}{2}\right)$

$$
\left(-3,-\frac{7 \pi}{6}\right)
$$

2. (5pts) Find the equation of the tangent line to the parametric curve $x=1-t^{3}, y=t^{2}+2 t$ at the point $(0,3)$.
3. (5pts) Describe the motion of a particle with position (x, y) as t varies in the given interval. Eliminate the parameter, identify the curve along which the particle moves and sketch the motion of the particle.

$$
\begin{aligned}
& x=\sin t \\
& y=\cos ^{2} t \\
& 0 \leq t \leq \pi
\end{aligned}
$$

4. (4pts) Find all possible polar coordinates of the point whose cartesian coordinates are $(-2,-2)$. A picture will help you.
5. (6 pts) Sketch the graph of the function $r=3(1+\sin \theta)$ in cartesian coordinates. Then use the intervals of increase and decrease of that graph to help you sketch the polar curve $r=3(1+\sin \theta)$. Indicate which piece of the cartesian graph corresponds to which piece of the polar graph.
6. (6pts) Find the length of the parametric curve given by $x=e^{t}-t, y=4 e^{t / 2}, 0 \leq t \leq 2$.
7. (10pts) Use intervals of increase and decrease of the functions $x(t)$ and $y(t)$ to sketch the parametric curve $x=t^{3}-3 t^{2}, y=t^{3}-3 t$. (You must show your analysis - just a calculator-generated picture will not do.)
8. (10pts) Sketch a picture and find the area of the region that is inside the polar curve $r=-3 \cos \theta$ and outside the polar curve $r=2+\cos \theta$.

Bonus. (5pts) Use the cartesian graph of the function to help you sketch the polar curve $r=\tan \theta$. This curve has two asymptotes. What are their equations? Use a parametric description of the curve to explain the equation of the asymptotes.

