Evaluate the following integrals:

1. (5pts) $\int x^{2} e^{x} d x=$
2. $(6 \mathrm{pts}) \int \frac{x+3}{(x-1)(x+2)} d x=$
3. (5pts) $\int \sin ^{3} x \cos ^{2} x d x=$
4. $(7 \mathrm{pts}) \int \frac{d x}{x^{2} \sqrt{x^{2}-1}} d x=$
5. (7pts) Evaluate the integral $\int \frac{\ln x}{x^{2}} d x$ and use this to determine whether $\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$ converges.
6. (5pts) Find the surface area of the surface obtained by rotating about the x-axis the segment joining points $(1,3)$ and $(3,7)$.
7. (10pts) The integral $\int_{0}^{3} e^{2 x} d x$ is given.
a) Compute the exact value of the integral.
b) Use the error estimate $\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$ to estimate the error that Simpson's rule makes for $n=20$.
c) Compute the exact error for S_{20} and verify that it compares correctly to b).
d) What should n be in order for S_{n} to give you an error less than 10^{-6} ?
8. (5pts) Use comparison to find out whether $\int_{1}^{\infty} \frac{1+\sin ^{2} x}{x} d x$ converges.

Note: only the bonus problem with the higher score will count toward your test total.
Bonus 1. (5pts) Evaluate $\int \frac{\sqrt{x}}{\sqrt{x}+2} d x=$

Bonus 2. (5pts) Simpson's rule for 2 subintervals is $S_{2}=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+y_{2}\right)$. Show algebraically that this will always give an exact answer for $\int_{a}^{b} x^{3} d x$. Hint: recall that y_{0}, y_{1} and y_{2} are, respectively, values of the function at the left endpoint, the midpoint and the right endpoint of the interval $[a, b]$.

