Evaluate the following integrals:

1. (5pts) $\int x^2 e^x dx =$

2. (6pts)
$$\int \frac{x+3}{(x-1)(x+2)} dx =$$

3. (5pts)
$$\int \sin^3 x \cos^2 x \, dx =$$

4. (7pts)
$$\int \frac{dx}{x^2 \sqrt{x^2 - 1}} \, dx =$$

5. (7pts) Evaluate the integral $\int \frac{\ln x}{x^2} dx$ and use this to determine whether $\int_1^\infty \frac{\ln x}{x^2} dx$ converges.

6. (5pts) Find the surface area of the surface obtained by rotating about the x-axis the segment joining points (1,3) and (3,7).

7. (10pts) The integral $\int_0^3 e^{2x} dx$ is given. a) Compute the exact value of the integral. b) Use the error estimate $|E_S| \leq \frac{K(b-a)^5}{180n^4}$ to estimate the error that Simpson's rule makes for n = 20.

c) Compute the exact error for S_{20} and verify that it compares correctly to b). d) What should *n* be in order for S_n to give you an error less than 10^{-6} ?

8. (5pts) Use comparison to find out whether $\int_{1}^{\infty} \frac{1 + \sin^2 x}{x} dx$ converges.

Note: only the bonus problem with the higher score will count toward your test total.

Bonus 1. (5pts) Evaluate $\int \frac{\sqrt{x}}{\sqrt{x+2}} dx =$

Bonus 2. (5pts) Simpson's rule for 2 subintervals is $S_2 = \frac{\Delta x}{3}(y_0 + 4y_1 + y_2)$. Show algebraically that this will always give an exact answer for $\int_a^b x^3 dx$. Hint: recall that y_0, y_1 and y_2 are, respectively, values of the function at the left endpoint, the midpoint and the right endpoint of the interval [a, b].