1. (7pts) Sketch the region and find its area if it is enclosed by the curves $y=x^{2}+1$, $y=3-x^{2}$.
2. (7pts) Sketch the region and find its area if it is enclosed by the curves $y=\frac{1}{x}, y=1$, $y=3$ and $y=-x$.
3. (8pts) Sketch the region enclosed by the curves $y=x^{2}$ and $y=3 x$. Find the volume of the solid obtained by rotating this region about the x-axis. Sketch the solid and a typical cross-section or cylindrical shell, depending on the method you are using.
4. (6 pts) The base of a solid is the region bounded by the lines $x=3, y=\frac{1}{3} x+1$ and the x and y axes. Set up the integral for the volume of the solid if its cross-sections perpendicular to the x-axis are half-disks. Sketch the solid and a typical cross-section.
5. (6pts) Sketch the region enclosed by the curves $y=2^{x}, y=3^{x}, x=1$ and $x=2$. Set up the integral for the volume of the solid obtained by rotating this region about the y-axis. Sketch the solid and a typical cross-section or cylindrical shell, depending on the method you are using.
6. (8pts) A cable that weighs $2 \mathrm{lb} / \mathrm{ft}$ is used to lift 800 lb of coal up a mine shaft 500 ft deep. Find the work done.
7. (8pts) Consider the function $f(x)=\sin x$ over the interval $[0, \pi]$.
a) What is the average value of the function over the interval?
b) What is the geometric interpretation of average value? Sketch a picture and verify that the picture is plausible in light of the geometric interpretation.
c) Verify the conclusion of the Mean Value Theorem for integrals, that is, find values of c in the interval so that $f_{\text {ave }}=f(c)$ (you will need to use the calculator).

Bonus (5pts) Set up the integral for the volume of a solid torus. It has the shape of a doughnut and is obtained by rotating a disk around an axis (see picture). Assume the disk rotated has radius b and its center is distance a from the axis of rotation.

