1. (8pts) The following are graphs of basic functions. Write the equation of the graph under each one.

Solution

2. (11pts) Solve the inequalities and write the solution using interval notation:

$$2x - 3 < 12 \quad |+3$$

$$2x < |5$$

$$x < \frac{|5|}{2}$$

$$(-\infty, \frac{|5|}{2})$$

$$|x - 3| \ge 5$$

$$distance from x + b = 3 \ge 5$$

$$\lim_{x \to 3} \frac{|+5|}{3}$$

3. (8pts) Solve the equation.

$$3x^{2} - 5x = 2x + 6 \qquad |-2x - 6|$$

$$3x^{2} - 7x - 6 = 0$$

$$x = \frac{7 \pm \sqrt{(-7)^{2} - 4 \cdot 3 \cdot (-6)}}{2 \cdot 3} = \frac{7 \pm \sqrt{49 + 72}}{6} = \frac{7 \pm \sqrt{121}}{6} = \frac{7 \pm 11}{6} = 3, -\frac{2}{3}$$

(10pts) Solve the equation.

$$x^{4} - 4x^{2} - 21 = 0$$
 let $u = x^{2}$ $u = 7$ or $u = -3$

$$u^{2} - 4u - 21 = 0$$

$$x^{2} = 7$$

$$(u - 7)(u + 3) = 0$$

$$x = \pm \sqrt{7}$$

$$x = \pm \sqrt{3} = \pm \sqrt{3}i$$

(10pts) Use the graph of the function f at right to answer the following questions.

b) What is the range of
$$f$$
?

c) Find
$$f(-3)$$
 and $f(3)$. $f(-3)$ at detect $f(3) = 1$

d) What are the solutions of the equation
$$f(x) = -1$$
? $\chi = 4$

e) Find all x for which $f(x) \ge 0$.

 (8pts) Find the equation of the line (in form y = mx + b) that is perpendicular to the line 3x - 4y = 7 and passes through the point (-1, 1).

$$3x-4y=7$$
 $-4y=-3x+7 \mid \div -4$
 $5 = \frac{3}{4}x - \frac{7}{4}$

$$5 - 1 = -\frac{4}{3}(x - (-1))$$

$$y = -\frac{4}{3}x - \frac{4}{3} + 1$$

$$y = -\frac{4}{3} \times -\frac{1}{3}$$

7. (9pts) Below is an equation of a circle. Find the center and radius of the circle and draw the circle.

$$x^{2} + y^{2} + 6x - 2y + 6 = 0$$

$$\chi^{2} + 6x + y^{2} - 2y = -6 + 3^{2} + 1^{2}$$

$$\chi^{2} + 6x + 3^{2} + y^{2} - 2y + 1^{2} = -6 + 10$$

$$(x + 3)^{2} + (y - 1)^{2} = 4$$

$$(\text{end}_{Y} = (-3, 1))$$

$$\text{radius} = \sqrt{4} = 2$$

8. (22pts) Let $f(x) = x^4 - 5x^2 - 9$ (answer with 4 decimal points accuracy).

a) Use your graphing calculator to accurately draw the graph of f (on paper!). Indicate scale on the graph.

b) Determine algebraically whether f is even, odd, or neither. Justify your answer further by examining the graph.

c) Find the x- and y-intercepts.

d) Find where f has a local minimum and maximum.

e) Find the intervals of increase and decrease.

L)
$$S(-x)=(-x)^4-S(x)^2-9$$

$$=x^4-Sx^2-9$$

$$=S(x)$$
I is even.
This is justified by the greet, which is symmetre about y-axis
(helps us find x-integrals)

9. (6pts) Find the domain of the function $g(x) = \sqrt{3-4x}$.

Must have
$$3-4\times70$$

 $3>4\times1+4$ Doment is $(-\infty,\frac{3}{4}]$
 $\frac{3}{4}>\times$

10. (8pts) Sketch the graph of the piecewise-defined function:

$$f(x) = \begin{cases} 2x - 1, & \text{if } -4 \le x \le 2\\ -x + 3, & \text{if } 2 < x < 6. \end{cases}$$

Bonus (10pts) Find all points on the line y = x - 3 whose distance to the point (1,2) equals 5. Draw a picture. (Hint: Set up an equation involving the distance between a generic point (x,y) and the point (1,2). Then use the fact that the point (x,y) has to be on the line.)

The points are
$$(3+\frac{\sqrt{34}}{2},\frac{\sqrt{34}}{2})\approx(5.9155,2.9155)$$

 $(3-\frac{\sqrt{34}}{2},-\frac{\sqrt{34}}{2})\approx(0.08452,-2.9155)$

$$d((x,y),(1,2)) = 5$$

$$\sqrt{(x-1)^2 + (y-2)^2} = 5 |^2 \text{ must also have}$$

$$(x-1)^2 + (x-3-2)^2 = 25$$

$$(x-1)^2 + (x-5)^2 = 25$$

$$(x-1)^2 + (x-5)^2 = 25$$

$$x^2 - 2x + 1 + x^2 - 10x + 25 = 25 |-25$$

$$2x^2 - 12x + 1 = 0$$

$$x = \frac{12 \pm \sqrt{-12}^2 - 4 \cdot 2 \cdot 1}{2 \cdot 2} = \frac{12 \pm \sqrt{144 - 8}}{4}$$

$$= \frac{12 \pm \sqrt{136} - 12 + \sqrt{4 \cdot 34}}{4} = \frac{12 \pm 2\sqrt{24} - 2(6 \pm \sqrt{34})}{4}$$

$$= \frac{6 \pm \sqrt{34}}{2} = 3 \pm \sqrt{\frac{34}{2}}$$