1. (7pts) Find the spherical coordinates of the point whose rectangular coordinates are $(-1,2,5)$.
2. (12pts) Let $z=x \sin (x y), x=8 t-t^{4}, y=e^{\frac{1}{t}}$. Find $\frac{d z}{d t}$ when $t=2$.
3. (10pts) Find parametric equations of the line that is the intersection of the planes $2 x+y-3 z=5$ and $x-y+2 z=4$.
4. (10pts) Let $f(x, y)=y-x^{3}$.
a) Draw the level curves for f for the levels $k=-2,-1,0,1,2$.
b) Roughly draw the vector field ∇f. Note that no computation is needed for this.
c) Compute $\int_{C} \nabla f \cdot d \mathbf{r}$, where C is the vertical line segment joining points $(1,-3)$ and $(1,4)$. d) If you are standing at the point $(4,-3)$, in which direction should you move to experience the greatest increase in f ?
5. (15pts) Find and classify the local extremes for the function $f(x, y)=x^{4}+y^{4}-4 x y+2$.
6. (16pts) Find $\iint_{D} \sin y^{2} d A$ if D is the region bounded by the graph of $y=|x|$ and the line $y=4$. Sketch the region of integration.
7. (14pts) Use either spherical or cylindrical coordinates to set up $\iiint_{E} z^{2}\left(x^{2}+y^{2}\right) d V$, where E is the region above the cone $z=\frac{1}{\sqrt{3}} \sqrt{x^{2}+y^{2}}$ and under the sphere $x^{2}+y^{2}+z^{2}=16$. Sketch the region of integration. Do not evaluate the integral.
8. (14pts) Sketch the region E bounded by the planes $z=3, y=0, z=2 x$ and the surface $y=\sqrt{x}$. Then write the iterated triple integral that stands for $\iiint_{E} f d V$ that ends in $d x d z d y$.
9. (22pts) Let D be the region between the curve $y=4-x^{2}$ and the x-axis and let C be its boundary, oriented in the positive (counterclockwise) direction.
a) Set up the two integrals needed to find $\int_{C} x y^{2} d x+2 x^{2} y d y$ and evaluate the easy one.
b) Find $\int_{C} x y^{2} d x+2 x^{2} y d y$ using Green's theorem.
10. (20pts) Let S be the part of the cylinder $y^{2}+z^{2}=9$ that is between planes $x=0$ and $x=5$. Choose normal vectors for S so that they point away from the x-axis.
a) Write the parametric equations for this surface. Specify the planar region D where your parameters come from.
b) Use your parametrization to set up the integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\langle x, y, z\rangle$.
c) Evaluate the integral from b).

Bonus (14pts) This problem is about the surface $x^{2}+y^{2}-z^{2}=1$.
a) Sketch and identify the intersections of this surface with the plane $z=k$.
b) Sketch the intersection of this surface with the $r z$-plane.
c) Use a) and b) to sketch the surface in 3D, with coordinate system visible.

