1. (10pts) Roughly draw the vector field ∇f if $f(x, y)=y-x^{2}$. Note that it is possible to do this with no computation.
2. (10pts) Write the parametric equations for the part of the plane $z=4-y$ that lies inside of the cylinder $x^{2}+z^{2}=10$. Specify the planar region D where your parameters come from.
3. (25pts) Let $\mathbf{F}(x, y, z)=2 x y \mathbf{i}+\left(x^{2}+e^{y} \sin z\right) \mathbf{j}+e^{y} \cos z \mathbf{k}$ be a vector field.
a) Find curl \mathbf{F}.
b) Is the field \mathbf{F} conservative? If it is, find the function f so that $\nabla f=\mathbf{F}$.
c) Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, if C is any curve from $(2,-1,0)$ to $\left(3,1, \frac{\pi}{2}\right)$.
4. (10pts) Let $\mathbf{F}(x, y, z)=\langle P, Q, R\rangle$. Show that $\operatorname{div}(f \mathbf{F})=\nabla f \cdot \mathbf{F}+f \operatorname{div} \mathbf{F}$.
5. (25pts) Let D be the region inside the unit circle, and let C be its boundary, oriented clockwise. Evaluate the integral $\int_{C} x y^{2} d x+y x^{2} d y$ in two ways:
a) directly
b) using Green's theorem.

If you don't get the same answer in a) and b), write " -5 " on the margin. (Just kidding! Go to next problem and then check back.)
6. (20pts) Set up the double integral for $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where the surface S is the part of the plane $x+y+2 z=6$ in the first octant, and $\mathbf{F}(x, y)=\langle-y, x, x+y+z\rangle$. Use the downwardpointing normal vector. Carry out the set-up until you get iterated single integrals, but do not evaluate the integral.

Bonus (10pts) Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ that lies above the plane $z=h, 0 \leq h \leq R$.

