## Fall '07/MAT 309/Exam $3 \quad$ Name:

1. (16pts) Find $\iint_{D} y^{2} d A$ if $D$ is the region bounded by the lines $y=0, y=-x$ and $y=\frac{1}{2}-\frac{x}{2}$. Sketch the region of integration.
2. (16pts) Evaluate $\int_{0}^{4} \int_{\sqrt{x}}^{2} \sqrt{1+y^{3}} d y d x$ by changing the order of integration. Sketch the region of integration.
3. (10pts) Set up $\iint_{D} x d A$ in polar coordinates if $D$ is the region inside the first-quadrant petal of the curve $r=\sin 2 \theta$ that is also above the line $y=x$. Sketch the region, but do not evaluate the integral.
4. (12pts) Sketch the region whose volume is given by the triple integral below:
$\int_{0}^{1} \int_{-\sqrt{2-x}}^{\sqrt{2-x}} \int_{0}^{4-4 y} 1 d z d y d x$
5. (16pts) Use cylindrical coordinates to set up $\iiint_{E} x y z^{2} d V$ where $E$ is the region above the paraboloid $z=\frac{1}{2}\left(x^{2}+y^{2}\right)$, under the sphere $x^{2}+y^{2}+z^{2}=35$ and between the planes $y=\sqrt{3} x$ and $y=-\sqrt{3} x$. Sketch the region of integration. Do not evaluate the integral.
6. (16pts) Sketch the region $E$ bounded by the planes $z=0, x=0,2 x+y+z=6$ and $y-2 z=0$. Then write the iterated triple integral that stands for $\iiint_{E} f d V$ that ends in $d y d z d x$.
7. (14pts) Use change of variables to find the area of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$.

Bonus. (10pts) Consider ther region below the paraboloid $z=\frac{1}{2}\left(x^{2}+y^{2}\right)$, inside the sphere $x^{2}+y^{2}+z^{2}=35$, and above the $x y$-plane.
a) Set up the triple integral for the volume of this region in spherical coordinates. b) Evaluate the integral, with final answer in exact form (not decimal!).

