1. (13pts) Let $f(x, y)=\sqrt{x^{2}+y^{2}-4}$.
a) Find the domain of f and sketch it.
b) Find the level curves for the levels $k=-1,0,1,2$ and draw them.
c) The point $(1,2)$ is on the level curve for $k=1$. Use b) to roughly draw the vector $\nabla f(1,2)$ emanating from the point $(1,2)$.
2. (14pts) At a cheese factory in Muscoda, WI, the intensity of the cheese smell is given by $L(x, y)=4+x^{3}+y^{3}-3 x y$.
a) Susan stands at point $(3,0)$ and sees Joe at point $(1,1)$. If she starts moving toward him, will the cheese smell intensify? At what rate?
b) In which direction should Susan move to experience the maximum drop in smell? At which rate will the smell intensity drop?
3. (9pts) A rectangular box is measured to have length $x=30 \mathrm{~cm}$, width $y=16 \mathrm{~cm}$ and height $z=90 \mathrm{~cm}$, with an error in measurement at most 0.5 cm in each. Use differentials to estimate the maximal error in computing the volume of the box.
4. (16pts) Let $z=\frac{e^{x y}}{y}, x=r \cos \theta, y=r \sin \theta$. Find $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$ when $r=4$ and $\theta=\frac{\pi}{2}$.
5. (15pts) The equation $x z^{3}+y \ln \left(x+y^{2} z\right)=7$ defines z implicitly as a function of x and y. Let $F(x, y, z)=x z^{3}+y \ln \left(x+y^{2} z\right)-7$. Find F_{x}, F_{y} and F_{z} and use them to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. (Do not simplify.)
6. (15pts) A circle of radius 3 is parametrized by $x=3 \cos t, y=3 \sin t$.
a) Find the circumference of the circle using the formula for length of parametric curves.
b) Reparametrize the curve with respect to arc length, measured from the point for which $t=0$.
7. (18pts) Find and classify the local extremes for the function $f(x, y)=2 x^{3}+x y^{2}+5 x^{2}+y^{2}$.

Bonus. (12pts) Among all triangles inscribed in the unit circle, find the one with the largest area. Tips: 1) By rotating, the triangle can be positioned so that one of its heights is vertical and the vertex on the height is on the upper half-circle, like in the picture.
2) Write the area $A(x, y)$ of the triangle in terms of x and y from the picture. Your job is to maximize $A(x, y)$ over a certain closed region in \mathbf{R}^{2}. What is the region? (Note: the triangle is completely determined by the point (x, y) where the height meets the base.)
3) What are the critical points of $A(x, y)$? (Squaring A won't help much. Find A_{x} and A_{y} directly.) Then investigate values on the boundary of the region.

