1. (6pts) Find $\langle 3,2+t, 5-2 t\rangle \times\langle 2,1, t+1\rangle=$
2. (17pts) Let \mathbf{a} and \mathbf{b} be vectors sketched below.
a) draw the vectors $-3 \mathbf{a}, \mathbf{a}-\mathbf{b}$ and $2 \mathbf{a}+\mathbf{b}$.
b) draw the vector $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$.
c) If $\mathbf{a}=-2 \mathbf{i}+3 \mathbf{j}$ and $\mathbf{b}=7 \mathbf{i}$, find the coordinates of $\operatorname{proj}_{\mathbf{b}} \mathbf{a}$.

3. (6 pts) Let \mathbf{a}, \mathbf{b} and \mathbf{c} be vectors, and u, v scalars. Are the following expressions defined? For those that are not, explain what is wrong.
$\mathbf{a} \times(\mathbf{b} \cdot \mathbf{c})$

$$
(\mathbf{b} \cdot \mathbf{c}) \mathbf{a} \times \mathbf{c}
$$

4. (10pts) The spherical coordinates of a point are $\left(4, \frac{2 \pi}{3}, \frac{3 \pi}{4}\right)$. Sketch the point and find its cylindrical coordinates (exact numbers, not decimal).
5. (9pts) In cylindrical coordinates, draw the solid described by: $3 \leq r \leq 5, \frac{\pi}{4} \leq \theta \leq \frac{3 \pi}{4}, 0 \leq z \leq 4$
6. (13pts) This problem is about the surface $y=\frac{x^{2}}{9}+\frac{z^{2}}{16}$.
a) Sketch and identify the intersections of this surface with the coordinate planes.
b) Sketch the surface in 3D, with coordinate system visible.
7. (9pts) The parametric equations of a curve are $x=3 \cos t, y=t^{2}, z=3 \sin t, 0 \leq t \leq 6 \pi$. Sketch this curve.
8. (17pts) A jet-powered eggplant travels along the path $x=t^{2}+2 t, y=\frac{3}{t+1}, z=t^{2} e^{t}$. At the point $\left(8,1,4 e^{2}\right)$ it experiences engine failure, so from this point on, it continues along the tangent line to this curve and splatters on the $x z$-plane.
a) Find the parametric equations of the line tangent to the curve at $\left(8,1,4 e^{2}\right)$.
b) At which point does the tangent line intersect the $x z$-plane? (This is where the eggplant splatters if gravitation is ignored.)
9. (13pts) Find the equation of the plane that contains the line $\frac{x-2}{1}=\frac{y+4}{-3}=\frac{z-1}{2}$ and the point $(3,0,4)$.

Bonus. (10pts) This problem is about the vector $\mathbf{d}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$.
a) Explain why \mathbf{d} lies in the plane spanned by \mathbf{b} and \mathbf{c}.
b) Since \mathbf{d} lies in the plane spanned by \mathbf{b} and \mathbf{c}, it can be written as $\mathbf{d}=u \mathbf{b}+v \mathbf{c}$, for some scalars u and v. Find a relationship between u and v by dotting the equation $\mathbf{d}=u \mathbf{b}+v \mathbf{c}$ by a.

