1. (23pts) Solve the equations.

2. (6pts) Solve by completing the square.

$$x^{2} - 10x + 5 = 8$$

$$x^{2} - 2 \cdot x \cdot 5 + 5^{2} + 5 = 8 + 25 \cdot 5 \mid -5$$

$$(x - 5)^{2} = 28$$

$$x - 5 = \pm \sqrt{28}$$

$$x = 5 \pm \sqrt{27}$$

$$4x^{4} - 11x^{2} - 3 = 0$$
Set $u = x^{2}$

$$4u^{2} - 1|u - 3 = 0$$

$$u = \frac{-(-11) \pm \sqrt{(-1)^{2} - 4 \cdot 4 \cdot (-3)}}{2 \cdot 4} = \frac{11 \pm \sqrt{165}}{8}$$

$$= \frac{11 \pm 13}{8} = 3, -\frac{1}{4}$$

Test in original equations

x = 3 $x = -\frac{1}{4}$ $x = \pm \sqrt{3}$ $x = \pm \frac{1}{2}i$

$$2(-7)+4\stackrel{?}{=}-7-\sqrt{-42+51}$$
 Only $x=-7$
 $-10\stackrel{?}{=}-7-\sqrt{9}$ yes is the solution.
 $2.5+4\stackrel{?}{=}5-\sqrt{30+51}$
 $14\stackrel{?}{=}5-9$ no

3. (4pts) Solve the equation.

$$|3x-1| = 13$$
 $3x-1=13$ or $3x-1=-13$
 $3x=14$ $3x=-12$
 $x=\frac{14}{3}$ or $x=-4$

4. (12pts) Solve the inequalities. Draw your solution and write it in interval form.

$$|2x-5| \le 7$$

$$|x+5| \ge 2$$

$$|x-(-5)| \ge 3$$

$$|x-(-5)|$$

5. (15pts) A landscaper plans to cover two rectangular areas with stone tiles, of which she has enough to cover 20 square feet. One of the rectangles has width 2 feet more than the other, and both rectangles have lengths that are 1 foot more than their respective widths. Assuming the landscaper uses up all the tiles, what are the dimensions of the rectangles?

$$2x^{2}+6x-14=0 +2$$

$$x^{2}+3x-7=0 \quad doesn't factor$$

$$x=\frac{-3\pm\sqrt{3^{2}-4\cdot1\cdot(-1)}}{2\cdot1}=\frac{-3\pm\sqrt{9+28}}{2}=\frac{-3\pm\sqrt{3}}{2}$$
The negative solution $-\frac{3-\sqrt{37}}{2}$ does not fit centext, since $x>0$.

Reduples: $-\frac{3+\sqrt{37}}{2}$ by $-\frac{3+\sqrt{57}}{2}+1=\frac{-1+\sqrt{37}}{2}$

$$-\frac{3+\sqrt{57}}{2}+2=\frac{1+\sqrt{57}}{2}$$
 by $-\frac{3+\sqrt{57}}{2}+3=\frac{3+\sqrt{37}}{2}$