1. (8pts) The quadratic function $f(x) = -x^2 - 2x + 8$ is given. Do the following without using the calculator.

- a) Find the *x*-intercepts of its graph, if any.
- b) Find the vertex of the graph.
- c) Sketch the graph of the function.
- d) What is the range of the function?

2. (2pts) The table gives values of f and g for some x's. Find $(g \circ f)(2)$ and $(f \circ f)(3)$.

x	1	2	3
$\begin{array}{c} f(x) \\ g(x) \end{array}$	$\frac{1}{3}$	21	$\frac{1}{2}$

3. (5pts) Let $f(x) = x^2 + 5$ and $g(x) = \sqrt{x-7}$. Find the following composites (simplify if possible):

$$(f \circ g)(x) = \qquad \qquad (g \circ g)(x) =$$

4. (3pts) Let h(x) = |3x + 5|. Break up this function into a composite of two functions f and g. That is, find f and g so that $h(x) = (f \circ g)(x)$.

5. (11pts) Consider the polynomial P(x) = (x + 1)(x - 4)(x - 6). Answer the following (decimal answers should have accuracy to two decimal places).

- a) Find the *x*-intercepts of the graph and the *y*-intercept.
- b) P behaves like what function for large |x|?
- c) Find the turning points of P.

d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.

e) Use the graph to determine where the function is decreasing.

6. (2pts) Write a formula for a polynomial of degree 4 whose zeroes are 1 (multiplicity 3) and 7 (multiplicity 1).

7. (11pts) Consider the rational function $Q(x) = \frac{x^2 - 3x - 10}{3x + 5}$.

Answer the following (decimal answers should have accuracy to two decimal places).

a) Find the domain of the function and where the vertical asymptotes are.

- b) Find the *x*-intercepts of the graph and the *y*-intercept.
- c) Find the horizontal asymptote, if any.

d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.

e) Find the intervals where the function is decreasing.

8. (8pts) Shannon has 100ft of fencing to enclose a rectangular play pen. Two sides of the pen are walls (see picture) and fence is used for the remaining two sides.

a) Express the area A of the play pen as a function of the width x.

b) Draw an accurate graph of the function A(x).

c) For what x is the area the largest? What is the maximum area?

Bonus (5pts) Find the formula for a rational function whose graph is shown. (Hint: what will give you the correct vertical asymptotes? The correct *x*-intercepts?)

