1. (10pts) The function $f(x)=x^{2}-16,3 \leq x \leq 6$ is given.
a) Find the Riemann sum for the function with $n=3$, taking sample points to be midpoints.
b) Illustrate with a diagram, where appropriate rectangles are clearly visible.
c) What does the Riemann sum represent?
2. (2pts) Simplify using part 1 of the Fundamental Theorem of Calculus:
$\frac{d}{d x} \int_{2}^{x} \frac{t^{14}}{t^{6}+4} d t=$
3. (4pts) Write in sigma notation.
$\frac{9}{5}+\frac{16}{6}+\frac{25}{7}+\frac{36}{8}+\frac{49}{9}=$
4. (8pts) Find $\int_{-2}^{2}(x+1) d x$ in two ways (they'd better give you the same answer!):
a) Using the "area" interpretation of the integral. Draw a picture.
b) Using the Fundamental Theorem of Calculus.
5. (5pts) Find $f(x)$ if $f^{\prime}(x)=x^{3}-3 x$ and $f(2)=5$.

Evaluate the following definite and indefinite integrals.
6. (4pts) $\int 5 \sec ^{2} x-e^{x} d x=$
7. (6pts) $\int_{1}^{3} \frac{x^{4}-1}{x^{2}} d x=$
8. (6pts) Let $v(t)=\sqrt{t}-1$ be the velocity of an inebriated snail (in millimeters per minute).
a) Calculate $\int_{1}^{4} v(t) d t$ and state what it represents.
b) If the snail is 5 mm away from a strawberry at time $t=1$, and is moving away, what is its position at time $t=4$?
9. (5pts) Use the substitution rule to evaluate the indefinite integral.

$$
\int \frac{\sin (\ln x)}{x} d x=
$$

Bonus. (5pts) The graph of a function f is drawn below. Let $g(x)=\int_{1}^{x} f(t) d t$.
a) Fill in the table with values of g (note: NOT values of f).
b) Draw a nice graph of g, using values in the table and paying attention to where g is increasing/decreasing, concave up/down.

x	0	1	2	3	4
$g(x)$					

