Differentiate and simplify where appropriate:

1. $(4 \mathrm{pts}) \frac{d}{d x}\left(7 x^{7}-\frac{1}{\sqrt[4]{x^{3}}}-\frac{7}{x^{4}}+e\right)=$
2. $(4 \mathrm{pts}) \frac{d}{d x} x^{10} e^{3 x}=$
3. $(4 \mathrm{pts}) \frac{d}{d x} \frac{x^{2}+4}{3 x-7}=$
4. $(5 \mathrm{pts}) \frac{d}{d x} \ln \left(\frac{2 x+1}{3 x-7}\right)^{4}=$
5. (5pts) Use logarithmic differentiation to find $\frac{d}{d x}\left(x^{2}+3 x-1\right)^{\sin x}$.
6. (4pts) Find the equation of the tangent line to the curve $y=x^{3}-4 x^{2}+7$ at the point $(1,4)$.
7. (4pts) Find the first three derivatives of $f(x)$ and use them to find the formula for $f^{(n)}(x)$ if $f(x)=\ln x$.
8. (5pts) Use implicit differentiation to find y^{\prime}.

$$
\tan (x y)=3 x^{2}+5 y^{4}
$$

9. (8pts) A tank filled with 600 liters of water drains in 4 hours from an opening in the bottom. The volume of water in the tank after t hours is given by $V(t)=600\left(1-\frac{t}{4}\right)^{2}$.
a) How much water is in the tank when $t=2$?
b) At what rate is the water draining when $t=2$? What are the units?
c) Interpret the meaning of the number in b) by approximating how much water there is in the tank at time $t=2.1$.
d) What is the exact amount of water in the tank at time $t=2.1$?
10. (7pts) A spotlight on the ground shines on a wall 12 meters away. If a man 2 meters tall walks from the spotlight to the wall at a speed of 1.6 meters per second, how fast is the length of his shadow on the wall decreasing when he is 8 meters away from the spotlight?

Bonus. (5pts) Let $h(x)=f(x) g(x)$. Find the formula for $h^{\prime \prime}(x)$ in terms of $f, f^{\prime}, f^{\prime \prime}, g, g^{\prime}$, $g^{\prime \prime}$. What familiar formula from algebra does it resemble?

