1. (5pts) Use the graph of the function f at right to answer:
a) At which points x is f not continuous?
b) At which points x is f not differentiable?
c) $\lim _{x \rightarrow 1-} f(x)=$
d) $\lim _{x \rightarrow \infty} f(x)=$

Differentiate and simplify where appropriate:
2. $(4 \mathrm{pts}) \frac{d}{d x}\left(x^{3}+4 x^{2}+1\right) e^{2 x}=$
3. $(3 \mathrm{pts}) \frac{d}{d x} \sin (\ln x)=$
4. (3pts) The edge of a cube was found to be 30 cm with a possible error in measurement of 0.1 cm . Use differentials to estimate the maximum possible error in computing the volume of the cube.
5. (4pts) Find the limit algebraically. Do not use L'Hospital's rule.
a) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=$
6. (4pts) Use L'Hospital's rule to find the limit:
$\lim _{x \rightarrow 0+} \frac{\sin x}{\sqrt{x}}=$
7. (5pts) Evaluate.
$\int_{0}^{8}\left(e^{-x}+\sqrt[3]{x}\right) d x=$
8. (4pts) Use substitution to find:
$\int \frac{\sec ^{2} x}{\tan x} d x=$
9. (8pts) Let $f(x)=x e^{x^{2}}$.
a) Find the intervals of increase/decrease and where f has a local maximum and minimum.
b) Find the intervals where f is concave up or down.
c) Use your calculator and the results of a) and b) to accurately sketch the graph of f.
10. (6pts) Use implicit differentiation to find y^{\prime}.
$x \cos y=4+x^{2} y^{2}$
11. (4pts) Use a graph to determine whether $\int_{0}^{2}\left(x^{2}-1\right) d x$ is positive or negative. Then evaluate the integral and verify your answer.
12. (3pts) The velocity of a jet-ski is given by $v(t)=3+t$ meters per second. By how much did it change position from time $t=2$ to $t=4$?
13. (6pts) Use the closed interval method to find the absolute minimum and maximum values for the function $f(x)=2 x^{3}+3 x^{2}-36 x+17$ on the interval $[0,4]$.
14. (7pts) A kite is moving horizontally at altitude 40 meters and speed 2 meters per second. At what is the angle between the string and the horizontal decreasing when 80 m of string have been let out?
15. (4pts) Use the Intermediate Value Theorem to show that the equation $x-\cos x=0$ has a solution in the interval $[0, \pi / 2]$.

Bonus 1. (4pts) Find a formula for the n-th derivative of $f(x)=\frac{1}{x^{4}}$.

Bonus 2. (4pts) A toll-road ticket shows a motorist entering a 160-mile long highway at $1: 00 \mathrm{PM}$ and exiting at $3: 00 \mathrm{PM}$. If the speed limit on the road is 65 mph , explain how a policeman armed with the Mean Value Theorem can prove that the motorist was speeding.

