1. (6pts) The graph of the function f is given.
a) State where f has an absolute minimum and maximum value, and what the value is.
b) State where f has a local minimum and maximum value, and what the value is.

2. (9pts) Use L'Hospital's rule to find the limits:
a) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=$
b) $\lim _{x \rightarrow 0}(1-2 x)^{\frac{1}{x}}=$
3. (10pts) Let $f(x)=\ln \left(x^{2}+4\right)$.
a) Find the intervals of increase/decrease and where f has a local maximum and minimum.
b) Find the intervals where f is concave up or down.
c) Use your calculator and the results of a) and b) to accurately sketch the graph of f.
4. (5pts) Suppose that for a continuous and differentiable function f we have $-2 \leq f^{\prime}(x) \leq 3$ for all x in $[1,4]$ and $f(1)=7$. Use the Mean Value Theorem to show that $1 \leq f(1) \leq 16$.
5. (6pts) Find the absolute minimum and maximum values for the function $f(x)=x-2 \sin x$ on the interval $\left[0, \frac{\pi}{2}\right]$.
6. (7pts) The function $f(x)=\sqrt[4]{x}$ is given.
a) Find the linearization of this function around the point $a=16$.
b) Determine the values x for which the linear approximation is accurate to within 0.05 .
7. (7pts) Use the graph of f to sketch the graphs of f^{\prime} and $f^{\prime \prime}$.

Bonus. (5pts) Use Rolle's theorem to show that the equation $2 x+\cos x=0$ has at most one solution.

