- **1.** (6pts) The graph of the function f is given.
- a) State where f has an absolute minimum and maximum value, and what the value is.
- b) State where f has a local minimum and maximum value, and what the value is.

2. (9pts) Use L'Hospital's rule to find the limits:

a)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$

b)
$$\lim_{x \to 0} (1 - 2x)^{\frac{1}{x}} =$$

- **3.** (10pts) Let $f(x) = \ln(x^2 + 4)$.
- a) Find the intervals of increase/decrease and where f has a local maximum and minimum.
- b) Find the intervals where f is concave up or down.
- c) Use your calculator and the results of a) and b) to accurately sketch the graph of f.

4. (5pts) Suppose that for a continuous and differentiable function f we have $-2 \le f'(x) \le 3$ for all x in [1,4] and f(1) = 7. Use the Mean Value Theorem to show that $1 \le f(1) \le 16$.

5. (6pts) Find the absolute minimum and maximum values for the function $f(x) = x - 2 \sin x$ on the interval $\left[0, \frac{\pi}{2}\right]$.

6. (7pts) The function $f(x) = \sqrt[4]{x}$ is given.

- a) Find the linearization of this function around the point a = 16.
- b) Determine the values x for which the linear approximation is accurate to within 0.05.

7. (7pts) Use the graph of f to sketch the graphs of f' and f''.

Bonus. (5pts) Use Rolle's theorem to show that the equation $2x + \cos x = 0$ has at most one solution.