Differentiate and simplify where appropriate:

1. $(4 \mathrm{pts}) \frac{d}{d x}\left(7 x^{3}-4^{x}+\sqrt[3]{x^{2}}+c^{4}\right)=$
2. $(4 \mathrm{pts}) \frac{d}{d x}(x \ln x-x)=$
3. (5pts) $\frac{d}{d x} \cos \sqrt{x^{2}-5 x+10}=$
4. $(5 \mathrm{pts}) \frac{d}{d x} \frac{x}{\sqrt{x^{2}+5}}=$
5. (5pts) Use logarithmic differentiation to find $\frac{d}{d x} x^{\tan x}$.
6. (4pts) Find the first three derivatives of $f(x)$ and use them to find the formula for $f^{(n)}(x)$ if $f(x)=e^{x}(x+5)$.
7. (6pts) Use implicit differentiation to find y^{\prime}.
$e^{x y}=x^{2}+y^{4}$
8. (4pts) The side x of a cube is increasing.
a) At what rate with respect to the length of the side is the volume of the cube increasing when $x=4 \mathrm{~cm}$? What are the units?
b) Approximate by how much the volume changes if x changes from 4 to 4.1 centimeters.
9. (6pts) An old shoe is thrown vertically upward with initial velocity $40 \mathrm{~m} / \mathrm{s}$. Its position is given by $s(t)=40 t-5 t^{2}$, where s is in meters, t in seconds.
a) What is the maximum height that it reaches?
b) What is its velocity when, on its way down, it is at height 60 m ?
10. (7pts) A plane flying horizontally at an altitude of 1 mi and a speed of $500 \mathrm{mi} / \mathrm{hr}$ passes directly over a radar station. Find the rate at which the straight-line distance from the plane to the radar station is increasing when this distance is 2 mi .

Bonus. (5pts) Verify that $\frac{d}{d x}\left(\frac{2 x^{2}-1}{4} \arcsin x+\frac{x \sqrt{1-x^{2}}}{4}\right)=x \arcsin x$.

