Group	1	2	3	4	5	6	7	8	9
15-year	5.20	5.20	5.20	6.05	6.05	6.05	7.55	7.55	7.55
30-year	5.88	5.88	5.88	6.33	6.33	6.33	8.00	8.00	8.00
savings	7	9	11	7	9	11	7	9	11

A family buying a home will need to take out a loan for \$150,000. They can afford payments both on a 15-year loan (which are higher) and a 30-year loan, but are trying to decide what is better for them in the long term.

 (7pts) Compute the monthly payment R₁ on the 15-year loan if the interest rate is 6.05 %, compounded monthly. Find the total payments that the family made on this loan.

$$|50000| = R \frac{1 - (1 + \frac{0.0605}{12})^{-12.15}}{\frac{0.0605}{12}} = |269.84$$

$$|50000| = R \frac{1 - (1.005041...)}{0.005041...}$$

$$|50000| = R \frac{1 - (1.005041...)}{0.005041...}$$

$$|50000| = R \cdot 118.1250...$$

$$|269.84 \cdot 180| = 228.571.34$$

 (7pts) Compute the monthly payment R₂ on the 30-year loan if the interest rate is 6.33 %, compounded monthly. Find the total payments that the family made on this loan.

$$|50000 = R| \frac{1 - \left(1 + \frac{0.0673}{12}\right)^{-12.30}}{0.0633}$$

$$|50000 = R| \frac{1 - \left(1.005275\right)^{-360}}{0.005275} \qquad Total payants,$$

$$|50000 = R| \cdot |61.0488 = 931.39$$

$$|50000 = R| \cdot |61.0488 = 931.39$$

Now we consider how much this family could save in 30 years. Suppose they can deposit money in an account bearing $\underline{7}$ % compounded monthly.

3. (7pts) If the family took the 15-year loan, after 15 years it doesn't have a monthly payment, so for the remaining 15 years it can put the monthly payment R_1 into savings. How much is in the savings account after 15 years?

$$F = 1269.84 \cdot \frac{\left(1 + \frac{0.07}{12}\right)^{12.15} - 1}{\frac{0.07}{12}}$$

$$= 1269.84 \cdot \frac{\left(1.0058_{-}\right)^{80} - 1}{0.0058_{-}}$$

$$= 1269.89 \cdot 316.962_{-} = 402,491.40$$

4. (7pts) If the family took the 30-year loan, it will have a monthly payment throughout the 30 years. However, since the family could have afforded the higher payment R₁, we assume they can put the difference D = R₁ - R₂ into a savings account every month for all of the 30 years. How much is in the savings account after 30 years?

$$D = 1269.84 - 931.39 = 338.45$$

$$F = 338.45 \cdot \frac{\left(1 + \frac{9.07}{12}\right)^{12.30} - 1}{\frac{9.07}{12}}$$

$$= 338.45 \cdot \frac{\left(1.0058.\right)^{360} - 1}{0.0058.} = 338.45 \cdot 1219.97 = 412,899.18$$

5. (2pts) What option ends up with more money in the savings account at the end of 30 years? What other considerations might come in when choosing the term of the loan?

Group	1	2	3	4	5	6	7	8	9
15-year	5.20	5.20	5.20	6.05	6.05	6.05	7.55	7.55	7.55
30-year	5.88	5.88	5.88	6.33	6.33	6.33	8.00	8.00	8.00
savings	7	9	11	7	9	11	7	9	11

A family buying a home will need to take out a loan for \$150,000. They can afford payments both on a 15-year loan (which are higher) and a 30-year loan, but are trying to decide what is better for them in the long term.

Group	1 1 - 3	14-6	17-9		
monthly payment	1201.88	1269.84	1394.78		(angl) sh
total payents	216,338,40	228,571.34	251,060,40	on the difference $\Omega = R$ below much be in the seven	

Group	1-3	14-6	17-9	
payut	887,79		1,100.65	31.32.32
			396, 234, 00	5. (2pts) What option ends yours? What other considerations.

Now we consider how much this family could save in 30 years. Suppose they can deposit money in an account bearing _____% compounded monthly.

3. (7pts) If the family took the 15-year loan, after 15 years it doesn't have a monthly payment, so for the remaining 15 years it can put the monthly payment R_1 into savings. How much is in the savings account after 15 years?

6 roug	of Shifts sin 100	2	3	4	to so the
nter Amo	380,949.60	454,797.08	546,480.81	402,491.65	480,515.08
6 mg	6	7	18	19	
	577, 383, 34	442,093.92	527,794.29	634,193.71	

4. (7pts) If the family took the 30-year loan, it will have a monthly payment throughout the 30 years. However, since the family could have afforded the higher payment R_1 , we assume they can put the difference $D = R_1 - R_2$ into a savings account every month for all of the 30 years. How much is in the savings account after 30 years?

5. (2pts) What option ends up with more money in the savings account at the end of 30 years? What other considerations might come in when choosing the term of the loan?