1. (4pts) If \mathbf{a} and \mathbf{b} are vectors sketched below, draw the vectors $\mathbf{b}-\mathbf{a}$ and $2 \mathbf{a}-3 \mathbf{b}$.
2. (3pts) Write the parametric equation of the line that passes through points $(3,0,-1)$ and ($-2,4,6$).
3. (2pts) Sketch the surface $z=\sin y$.
4. (6pts) Find the equation of the plane that contains the line $x=1-3 t, y=2+t, z=-2 t$ and contains the point $(3,-4,2)$.
5. (5pts) A werewolf is moving in the $x y$-plane. At the moment when he is at point $(3,2)$ the rates of change of his x and y coordinates are $\frac{d x}{d t}=-1, \frac{d y}{d t}=3$. What is the rate of change of his distance to the origin?
6. (8pts) The function $f(x, y, z)=z-x^{2}-y^{2}$ is given.
a) Draw the level surfaces for levels 0,2 and 5 .
b) At point $(1,-2,3)$, in which direction is the directional derivative the greatest and how much is it?
c) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=-2 x \mathbf{i}-2 y \mathbf{j}+\mathbf{k}$ and C is a path from any point on the level surface $z-x^{2}-y^{2}=9$ to any point on the level surface $z-x^{2}-y^{2}=2$.
7. (7pts) Find the local maximum and minimum values and saddle point(s) of the function $f(x, y)=4 y-x^{2}-y^{2}$.
8. (7pts) Find $\iint_{D} x d A$ if D is the part of the region bounded by the circles $x^{2}+y^{2}=1$, $x^{2}+y^{2}=9$ that is above the line $y=-x$.
9. (7pts) Use either cylindrical or spherical coordinates to set up $\iiint_{E} x^{2}+z^{2} d V$ where E is the region inside the sphere $x^{2}+y^{2}+z^{2}=16$ and between the planes $y=0$ and $y=\sqrt{3} x$. Do not evaluate the integral.
10. (8pts) Sketch the region of integration and give the two integrals that end in $d x d z d y$ and $d y d z d x$ that are equivalent to the integral $\int_{0}^{1} \int_{1-y^{2}}^{1} \int_{0}^{1-x} f d z d x d y$.
11. (10pts) Let D be the region between the parabola $y=x^{2}$ and the line $y=9$ and let C be the boundary of this region, oriented clockwise. Evaluate the integral $\int_{C} x^{2} d x+2 x y d y$ in two ways:
a) directly
b) using Green's theorem.
12. (8pts) Set up the double integral for $\iint_{S} y z d S$ where the surface S is the part of the cylinder $x^{2}+y^{2}=4$ between the planes $z=1$ and $z=5$. Carry out the set-up until you get iterated single integrals, but do not evaluate the integral.
13. (5pts) Is the field $\mathbf{F}(x, y)=y e^{x} \mathbf{i}+\left(e^{x}+2 y\right) \mathbf{j}$ conservative? If it is, find the function f so that $\nabla f=\mathbf{F}$.

Bonus 1. (4pts) Use the divergence theorem to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ if S is the boundary of the cube bounded by the planes $x= \pm 1, y= \pm 2, z= \pm 3$ and $\mathbf{F}=3 x \mathbf{i}+x y \mathbf{j}+2 x z \mathbf{k}$.

Bonus 2. (4pts) Let $\mathbf{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ and let C be the boundary of the planar region D on which \mathbf{F} is defined. Apply Stokes' theorem to the surface D in order to get Green's theorem. (In other words, Green's theorem is a special case of Stokes' theorem when the surface is a planar region.)

