1. (7pts) Find $\iint_{D} x d A$ if D is the region bounded by the curves $y=x^{2}-4 x$ and $y=2 x$. Sketch the region of integration.
2. (6pts) Evaluate $\int_{0}^{2 \pi} \int_{y / 2}^{\pi} \frac{\sin x}{x} d x d y$ by changing the order of integration. Sketch the region of integration.
3. (6 pts) Set up the iterated triple integral for $\iiint_{E} f d V$ if E is the region in the first octant bounded by the planes $x-y=0, y=3$ and $2 y-z=0$. Sketch the region of integration.
4. (9pts) Sketch the region of integration and evaluate $\iint_{D} y d A$ if D is the region inside the circle $(x-1)^{2}+y^{2}=1$ and between the lines $y=-\sqrt{3} x$ and $y=x$.
5. (6 pts$)$ Use either cylindrical or spherical coordinates to set up $\iiint_{E} x^{2}+y^{2} d V$ where E is the region bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=9$. Sketch the region of integration. Do not evaluate the integral.
6. (7pts) Sketch the region of integration and give the three integrals that end in $d z d x d y$, $d y d z d x$ and $d y d x d z$ that are equivalent to the integral $\int_{0}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{3 x} f d z d y d x$.
7. (9pts) Use change of variables to evaluate the integral $\iint_{D} \frac{1}{x} d A$ if D is the region bounded by $y=x, y=3 x, y=2-x$ and $y=5-x$. Sketch the region D.

Bonus. (5pts) Write the remaining two integrals that are equivalent to the integral in problem 6.

