1. (7pts) Find $\iint_D x \, dA$ if D is the region bounded by the curves $y = x^2 - 4x$ and y = 2x. Sketch the region of integration.

2. (6pts) Evaluate $\int_0^{2\pi} \int_{y/2}^{\pi} \frac{\sin x}{x} dx dy$ by changing the order of integration. Sketch the region of integration.

3. (6pts) Set up the iterated triple integral for $\iiint_E f \, dV$ if E is the region in the first octant bounded by the planes x - y = 0, y = 3 and 2y - z = 0. Sketch the region of integration.

4. (9pts) Sketch the region of integration and evaluate $\iint_D y \, dA$ if D is the region inside the circle $(x-1)^2 + y^2 = 1$ and between the lines $y = -\sqrt{3}x$ and y = x.

5. (6pts) Use either cylindrical or spherical coordinates to set up $\iiint_E x^2 + y^2 dV$ where E is the region bounded by the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 9$. Sketch the region of integration. Do not evaluate the integral.

6. (7pts) Sketch the region of integration and give the three integrals that end in $dz \, dx \, dy$, $dy \, dz \, dx$ and $dy \, dx \, dz$ that are equivalent to the integral $\int_0^2 \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_0^{3x} f \, dz \, dy \, dx$.

7. (9pts) Use change of variables to evaluate the integral $\iint_D \frac{1}{x} dA$ if D is the region bounded by y = x, y = 3x, y = 2 - x and y = 5 - x. Sketch the region D.

Bonus. (5pts) Write the remaining two integrals that are equivalent to the integral in problem 6.