$$
\begin{array}{lll}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \sin (2 \theta)=2 \sin \theta \cos \theta & \sin ^{2} \frac{\theta}{2}=\frac{1-\cos \theta}{2} \\
\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} & \cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& \tan (2 \theta)=\frac{2 \tan \theta}{1-\tan ^{2} \theta} & \tan ^{2} \frac{\theta}{2}=\frac{1-\cos \theta}{1+\cos \theta}
\end{array}
$$

1. (8 pts) Without using the calculator, find the exact values of the following expressions. Draw the unit circle and the appropriate angle under the expression.

$$
\cos 30^{\circ}=\quad \sec \frac{3 \pi}{4}=\quad \arctan \sqrt{3}=\quad \arcsin 1.3=
$$

2. (4pts) Use the picture below to estimate $\cos 18^{\circ}$ and $\arcsin (-0.4)$ (in degrees). Then evaluate these numbers using a calculator and compare your answers.

3. (5pts) Draw two periods of the graph of $y=-3 \sin (2 \theta)$. What is the amplitude? The period? Indicate where the special points are (x-intercepts, peaks, valleys).
4. (5pts) Use a half-angle formula to find the exact value of $\cos 165^{\circ}$.
5. (4pts) Find all the solutions of the equation $2 \sin \theta+1=0$.
6. (6pts) Solve the triangle: $\alpha=42^{\circ}, \gamma=57^{\circ}, b=5$
7. (5pts) Show the identity: $1-\frac{\sin ^{2} \theta}{1-\cos \theta}=-\cos \theta$.
8. (4pts) Find the exact values of the expressions below. Draw a picture if helpful and do not use the calculator.
$\sin (\arcsin 0.57)=$
$\arctan \left(\tan \frac{7 \pi}{8}\right)=$
9. (9pts) Suppose that $\pi<\alpha<\frac{3 \pi}{2}$ and $\frac{\pi}{2}<\beta<\pi$ are angles so that $\tan \alpha=\frac{3}{2}$ and $\cos \beta=-\frac{3}{7}$. Use addition and double formulas to find:
a) $\sin (\alpha-\beta)$
b) $\cos (2 \beta)$

Bonus. (5pts) You take a sighting of the top of a building from a certain point and find that the angle of elevation is 33°. Then you move 200ft towards the building and take another sighting, finding the angle of elevation to be 51° now. How tall is the building?

