$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\sin(2\theta) = 2\sin\theta\cos\theta$	$\sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2}$
$\tan\left(\alpha \pm \beta\right) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha \tan\beta}$	$\cos(2\theta) = \cos^2 \theta - \sin^2 \theta$ $\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$	$\tan^2\frac{\theta}{2} = \frac{1-\cos\theta}{1+\cos\theta}$

1. (8pts) Without using the calculator, find the exact values of the following expressions. Draw the unit circle and the appropriate angle under the expression.

$$\cos 30^\circ = \qquad \qquad \sec \frac{3\pi}{4} = \qquad \qquad \arctan \sqrt{3} = \qquad \qquad \arctan 1.3 =$$

2. (4pts) Use the picture below to estimate $\cos 18^{\circ}$ and $\arcsin(-0.4)$ (in degrees). Then evaluate these numbers using a calculator and compare your answers.

3. (5pts) Draw two periods of the graph of $y = -3\sin(2\theta)$. What is the amplitude? The period? Indicate where the special points are (*x*-intercepts, peaks, valleys).

4. (5pts) Use a half-angle formula to find the exact value of $\cos 165^{\circ}$.

5. (4pts) Find all the solutions of the equation $2\sin\theta + 1 = 0$.

6. (6pts) Solve the triangle: $\alpha = 42^{\circ}, \gamma = 57^{\circ}, b = 5$

7. (5pts) Show the identity:
$$1 - \frac{\sin^2 \theta}{1 - \cos \theta} = -\cos \theta$$
.

8. (4pts) Find the exact values of the expressions below. Draw a picture if helpful and do not use the calculator.

 $\sin(\arcsin 0.57) =$

 $\arctan\left(\tan\frac{7\pi}{8}\right) =$

9. (9pts) Suppose that $\pi < \alpha < \frac{3\pi}{2}$ and $\frac{\pi}{2} < \beta < \pi$ are angles so that $\tan \alpha = \frac{3}{2}$ and $\cos \beta = -\frac{3}{7}$. Use addition and double formulas to find:

- a) $\sin(\alpha \beta)$
- b) $\cos(2\beta)$

Bonus. (5pts) You take a sighting of the top of a building from a certain point and find that the angle of elevation is 33° . Then you move 200ft towards the building and take another sighting, finding the angle of elevation to be 51° now. How tall is the building?