1. (3pts) Let $f(x)=x^{2}+x$. Find $(f \circ f)(x)$ and simplify.
2. (4pts) The graph of f is given. Explain why f has an inverse and find the graph of its inverse function. Label the relevant points and indicate any asymptotes on the graph of f^{-1}.

3. (5pts) Find the inverse of $f(x)=\frac{2 x}{x+7}$ and the range of f.
4. (4pts) Evaluate without using the calculator:
$\log _{2} 32=\quad \log _{4} \frac{1}{256}=\quad \log _{25} \frac{1}{5}=\quad \ln \sqrt[3]{e^{7}}=$
5. (7pts) Solve the equations
$\log _{3}(2 x-1)=-2$

$$
8^{x^{2}+x}=\left(\frac{1}{2}\right)^{3 x-9}
$$

6. (3pts) Write as a sum of logarithms. Express powers as factors. Simplify if possible. $\log _{7} \frac{49^{x+2}}{(x-4)^{5}}=$
7. (3pts) Write as a single logarithm. Simplify if possible.
$\frac{1}{2} \log _{3}(2 x-7)^{4}+3 \log _{3}(2 x-7)^{3}=$
8. (6pts) A rabbit population grows according to the law $N(t)=N_{0} e^{k t}$.
a) Given that the population doubles in 18 months, find k.
b) How long does it take for the rabbit population to triple?
9. $(2 \mathrm{pts})$ Roughly sketch angles of measure 140° and $-\frac{2 \pi}{3}$ radians.
10. (5pts) Suppose $\sin \theta=\frac{2}{5}$ and $0<\theta<\frac{\pi}{2}$. Find $\cos \theta, \tan \theta$ and $\sec \theta$.
11. (3pts) Simplify using basic trigonometric identities. Do not use the calculator. $\sin 42^{\circ} \csc 48^{\circ}-\tan 42^{\circ}=$
12. (5pts) You would like to get a wedge of pizza that is exactly $15 \mathrm{in}^{2}$ in area. If the diameter of the pizza is 12 in , what is the angle (in degrees) of the desired wedge?

Bonus (5pts) Simplify:
$\log _{\pi^{2}} \pi^{9}=$
$\log _{2} 3 \cdot \log _{3} 4 \cdot \log _{4} 5 \cdots \cdots \log _{n}(n+1) \cdot \log _{n+1} 2=$

