

(8pts) Anna has 4000ft of fencing with which she plans to enclose a rectangular field and divide
it into two parts by running some of the fence across the field, parallel to the width side (picture).

Name:

- a) Express the area A of the rectangle as a function of the width x of the rectangle.
- b) Draw an accurate graph of the function A(x).
- c) For what x is the area the largest? What is the maximum area?

- 2. (11pts) Consider the polynomial $P(x) = (x+2)(x+4)(x-5)^2$. Answer the following (decimal answers should have accuracy to two decimal places).
- a) Find the x-intercepts of the graph and the y-intercept.
- b) P behaves like what function for large |x|?
- c) Find the turning points of P.
- d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.
- e) Use the graph to determine the range of the function.

a)
$$(x+1)(x+4)(x-5)^{2}=0$$

 $x=-2,-4,5 \in x+10^{3}$
 $P(0)=2\cdot4\cdot5)^{2}=200$

[-10,10] x [-300,300]

- 3. (11pts) Consider the rational function $Q(x) = \frac{2x^2 5}{x^2 x 12}$. Answer the following (decimal answers should have accuracy to two decimal places).
- a) Find the domain of the function and where the vertical asymptotes are.
- b) Find the x-intercepts of the graph and the y-intercept.
- c) Find the horizontal asymptote, if any.
- d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.
- e) Find the intervals where the function is decreasing.

a)
$$x^{2} \times -12 = 0$$

 $(x-4)(x+3)=0$
 $x=4$ or $x=-3$
Vertical asymp. $x=4, x=-3$

c)
$$y = \frac{2}{1} = 2$$
 is homewhat asymp.

