1. (8pts) The quadratic function  $f(x) = x^2 + 4x + 6$  is given. Do the following without using the calculator.

Name:

a) Find the x-intercepts of its graph, if any.

b) Find the vertex of the graph.

c) Sketch the graph of the function.

d) What is the range of the function?



(1) 
$$x = -\frac{\ell}{2a} = -\frac{4}{21} = -2$$
  
 $y = (-2)^{\frac{1}{2}} + 4(-1) + 6 = 2$ 



(2pts) The table gives values of f and g for some x's. Find (g ∘ f)(3) and (f ∘ f)(1).

3. (5pts) Let f(x) = 3x + 5 and  $g(x) = \sqrt{x-7}$ . Find the following composites (simplify if possible):

$$(g \circ f)(x) = \mathcal{G}(f(x)) \qquad (f \circ f)(x) = f(f(x))$$

$$= \mathcal{G}(3x+5)$$

$$= \sqrt{(3x+5)} - 7 \qquad = f(3x+5) + 5$$

$$= \sqrt{3x-2} \qquad = 9x + 20$$

4. (3pts) Let  $h(x) = \frac{2}{x^2 + 1}$ . Break up this function into a composite of two functions f and g. That is, find f and g so that  $h(x) = (f \circ g)(x)$ .

$$5(x) = x + 1$$
  
 $4(x) = \frac{2}{x}$ 

- 5. (11pts) Consider the polynomial P(x) = -(x-3)(x+4)(x-5). Answer the following (decimal answers should have accuracy to two decimal places).
- a) Find the x-intercepts of the graph and the y-intercept.
- b) P behaves like what function for large |x|?
- c) Find the turning points of P.
- d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.
- e) Use the graph to determine where the function is increasing.

l) 
$$P(x) = -(x^2 + -)(x-5)$$
  

$$= -(x^3 + - -)$$

$$= -x^3 - lover povers$$
Behaves like  $-x^3$ 



 (2pts) Write a formula for a polynomial of degree 3 whose zeroes are -3 (multiplicity 2) and 4 (multiplicity 1).

$$P(x) = (x+3)^{2}(x-4)$$
has degra 3

7. (11pts) Consider the rational function  $Q(x) = \frac{3x+5}{x^2-3x-10}$ .

Answer the following (decimal answers should have accuracy to two decimal places).

- a) Find the domain of the function and where the vertical asymptotes are.
- b) Find the x-intercepts of the graph and the y-intercept.
- c) Find the horizontal asymptote, if any.
- d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.
- e) Find the intervals where the function is increasing.

(4) 
$$x^{2} - 3x - 10 = 0$$
  
 $(x-5)(x+2) = 0$   
 $x = 5, -2$   
 $D = 3x \mid x \neq 5, x \neq -23$   
Asympt:  $x = 5, k = -2$ 

(1) 
$$3x + 5 = 0$$
  
 $x = -\frac{5}{3}x - ind$   
 $Q(0) = \frac{5}{-10} = -\frac{1}{2}y - ind$ 





- 8. (8pts) Shannon has 100ft of fencing to enclose a rectangular play pen. Two sides of the pen are walls (see picture) and fence is used for the remaining two sides.
- a) Express the area A of the play pen as a function of the width x.
- b) Draw an accurate graph of the function A(x).
- c) For what x is the area the largest? What is the maximum area?



a) 
$$A = x(100-x)$$
  
=  $-x^2 + 100x$ 

L) 
$$\times (100-x) = 0$$
  
 $x = 0, 100 \times -14$ .  
Vetex:  $x = -\frac{100}{2 \cdot (-1)} = 50$   
 $y = 50(100-50) = 2500$ 



Bonus (5pts) Find the formula for a rational function whose graph is shown. (Hint: what will give you the correct vertical asymptotes? The correct x-intercepts?)

