$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$	$\sin(2\theta) = 2\sin\theta\cos\theta$	$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$
$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$ $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \pm \tan \beta}$	$cos(2\theta) = cos^2 \theta - sin^2 \theta$ $= 2 cos^2 \theta - 1$ $= 1 - 2 sin^2 \theta$	$\cos^2\theta = \frac{1+\cos 2\theta}{2}$
$1 + \tan \alpha \tan \beta$	$\tan\left(2\theta\right) = \frac{2\tan\theta}{1-\tan^2\theta}$	$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$

1. (8pts) Without using the calculator, find the exact values of the following expressions. Draw the unit circle and the appropriate angle under the expression.

$$\cos 30^\circ = \qquad \qquad \tan \frac{5\pi}{2} = \qquad \qquad \arccos \frac{\sqrt{2}}{2} = \qquad \qquad \arctan \left(-\frac{1}{2}\right) =$$

2. (4pts) Use the picture below to estimate $\tan 40^{\circ}$ and $\arccos(-0.4)$ (in degrees). Then evaluate these numbers using a calculator and compare your answers.

3. (4pts) Draw two periods of the graph of $y = 2\cos(\pi x)$. What is the amplitude? The period? Indicate where the special points are (x-intercepts, peaks, valleys).

4. (4pts) Use an addition formula to find the exact value of $\cos 105^{\circ}$.

5. (4pts) Use a double-angle formula to find the exact value of $\sin \frac{9\pi}{8}$.

6. (3pts) State the angles for which $\sec \theta$ is not defined. Explain. (Hint: looking at the unit circle and writing what $\sec \theta$ is in terms of x and y coordinates may help.)

7. (4pts) Show the identity: $\sec^4 \theta - \sec^2 \theta = \tan^4 \theta + \tan^2 \theta$.

8. (6pts) If $\tan \theta = \frac{2}{5}$ and θ is in the third quadrant, find $\sin(2\theta)$ and $\cos \frac{\theta}{2}$.

9. (4pts) Find the exact values of the expressions below. Draw a picture if helpful and do not use the calculator.

 $\tan(\arctan 4.13) =$

 $\arccos\left(\cos\left(\frac{5\pi}{4}\right)\right) =$

10. (4pts) Find all the solutions of the equation $2\sin\theta - \sqrt{3} = 0$.

11. (5pts) Suppose you are headed toward a building 50 meters high. If the angle of elevation to the top of the building is 20° , how far away from the building are you?

Bonus (5pts) Show that $\sin(\arctan u) = \frac{u}{\sqrt{u^2 + 1}}$.