$$
\begin{array}{rlrl}
\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta & \sin (2 \theta) & =2 \sin \theta \cos \theta & \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2} \\
\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta & \cos (2 \theta) & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =2 \cos ^{2} \theta-1 \\
\tan (\alpha \pm \beta)=\frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} & & =1-2 \sin ^{2} \theta & \cos ^{2} \theta=\frac{1+\cos 2 \theta}{2} \\
& & \tan (2 \theta) & =\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{array} \quad \begin{gathered}
\tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}
\end{gathered}
$$

1. (8pts) Without using the calculator, find the exact values of the following expressions. Draw the unit circle and the appropriate angle under the expression.

$$
\cos 30^{\circ}=\quad \tan \frac{5 \pi}{2}=\quad \arccos \frac{\sqrt{2}}{2}=\quad \arcsin \left(-\frac{1}{2}\right)=
$$

2. (4pts) Use the picture below to estimate $\tan 40^{\circ}$ and $\arccos (-0.4)$ (in degrees). Then evaluate these numbers using a calculator and compare your answers.

3. (4pts) Draw two periods of the graph of $y=2 \cos (\pi x)$. What is the amplitude? The period? Indicate where the special points are (x-intercepts, peaks, valleys).
4. $(4 \mathrm{pts})$ Use an addition formula to find the exact value of $\cos 105^{\circ}$.
5. (4pts) Use a double-angle formula to find the exact value of $\sin \frac{9 \pi}{8}$.
6. (3pts) State the angles for which $\sec \theta$ is not defined. Explain. (Hint: looking at the unit circle and writing what $\sec \theta$ is in terms of x and y coordinates may help.)
7. (4pts) Show the identity: $\sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \theta+\tan ^{2} \theta$.
8. (6pts) If $\tan \theta=\frac{2}{5}$ and θ is in the third quadrant, find $\sin (2 \theta)$ and $\cos \frac{\theta}{2}$.
9. (4pts) Find the exact values of the expressions below. Draw a picture if helpful and do not use the calculator.
$\tan (\arctan 4.13)=$
$\arccos \left(\cos \left(\frac{5 \pi}{4}\right)\right)=$
10. (4pts) Find all the solutions of the equation $2 \sin \theta-\sqrt{3}=0$.
11. (5pts) Suppose you are headed toward a building 50 meters high. If the angle of elevation to the top of the building is 20°, how far away from the building are you?

Bonus (5pts) Show that $\sin (\arctan u)=\frac{u}{\sqrt{u^{2}+1}}$.

