Differentiate and simplify where appropriate:

1. (5pts) $\frac{d}{d x} \frac{x+3}{x^{2}-4}=$
2. $(4 \mathrm{pts}) \frac{d}{d x} \ln (\sin x)=$
3. (4pts) Find the limit algebraically. Do not use L'Hospital's rule.
a) $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}=$
4. (4pts) Use L'Hospital's rule to find the limit:
$\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=$
5. (8pts) Let $f(x)=x^{2} e^{x}$.
a) Find the intervals of increase/decrease and where f has a local maximum and minimum.
b) Find the intervals where f is concave up or down.
c) Use your calculator and the results of a) and b) to accurately sketch the graph of f.
6. (3pts) Find $D^{65} \sin 3 x$.
7. (8pts) Find the following definite and indefinite integrals. Use substitution in the second one.
a) $\int_{1}^{3} \frac{4 x^{2}-1}{x} d x=$
b) $\int \frac{\sin x}{\cos ^{2} x} d x=$
8. (4pts) Interpret the following integral as area to help you find it. Draw a picture.
$\int_{0}^{4} \sqrt{16-x^{2}} d x=$
9. $(7 \mathrm{pts})$ Use four rectangles to estimate the area under the curve $y=9-x^{2}$ from $x=0$ to $x=2$. Choose sample points in two ways (draw a picture big and beautiful) so that you
a) Overestimate the area.
b) Underestimate the area.
10. (4pts) The graph of f is given. Sketch the graph of f^{\prime}.

11. (7pts) Consider the equation $e^{x}-x-2=0$.
a) Use the Intermediate Value Theorem to show that this equation has a solution in the interval $[0,2]$.
b) Use your calculator to find an interval of length 0.01 that contains this root. Explain why the IVT will guarantee there is root in the interval that you found.
12. (4pts) Oil is leaking from a tank at rate $3+2 t$ liters per minute through a hole that is increasing in size. How much oil leaks out from $t=4$ minutes to $t=7$ minutes?
13. (8pts) Find the point on the line $y=2 x+1$ that is closest to the point $(4,2)$. Verify that the point you found indeed is the closest. (Hint: minimize the square of distance to $(4,2)$.)

Bonus. (7pts) A spotlight on the ground shines on a wall 12 m away. If a man 2 m tall walks from the spotlight toward the building at speed of $1.6 \mathrm{~m} / \mathrm{s}$, how fast is the length of his shadow on the building decreasing when he is 4 m from the building?

