
1. (4pts) Let $f(x) = x^2 + 3x - 1$ and g(x) = x - 5. Find $(f \circ g)(x)$ and simplify.

$$(fo_0)(x) = f(g(x)) = f(x-5) = (x-5)^2 + 3(x-5) - 1$$

= $x^2 - 10x + 25 + 3x - 15 - 1$
= $x^2 - 7x + 9$

2. (4pts) The graph of f is given. Explain why f has an inverse and find the graph of its inverse function.

- Function passes the honzontal live test, so it is one-to-one and hence has an inverse
- 3. (6pts) Solve the equations

$$\log_x 8 = 2$$

$$\chi = \emptyset$$

$$4 = \sqrt{\S}$$

$$25^{x+2} = \left(\frac{1}{5}\right)^{3x-1}$$

$$2x+9=-3x+1$$

4. (4pts) Evaluate without using the calculator:

$$\log_4 16 = 2$$

$$\log_2 \frac{1}{8} = -3 \qquad \qquad \ln \sqrt{e} = \frac{1}{2}$$

$$\ln \sqrt{e} = \frac{1}{2}$$

$$\log_5 \sqrt[3]{25} = \frac{2}{3}$$

$$2 = \frac{1}{8}$$

(3pts) Write as a sum of logarithms. Express powers as factors. Simplify if possible.

$$\log_2(2^x(x+1)^3) = \ \log_2(2^x(x+1)^3) = \ \log_2($$

6. (3pts) Write as a single logarithm. Simplify if possible.

$$\ln(x^2 + 7x + 12) - 3\ln(x + 4) = \lim_{x \to 0} (x^2 + 7x + 12) - \lim_{x \to 0} (x + 4)$$

$$=$$
 $l_{11} \frac{x+3}{(x+4)^2}$

7. (5pts) Solve the equation.

$$\log_2(x+1) + \log_2(x+3) = 3$$

$$x^{1} + 4x + 3 = 2^{3}$$

$$x^{2} + 4x - 5 = 0$$

- 8. (7pts) The amount of carbon 14 in a specimen is given by $A(t) = A_0 e^{kt}$, where A_0 is the original amount of carbon 14.
- a) Given that the half-life of carbon 14 is 5600 years, find what k is.
- b) A fossilized leaf contains 70% of its original amount of carbon 14. How old is the fossil?

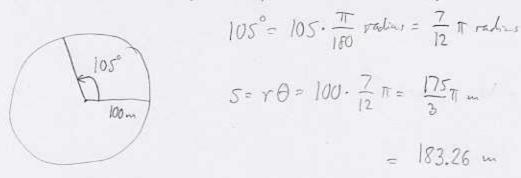
a)
$$\frac{1}{2}A_0 = A_0 e^{k.5600}$$
 $\frac{1}{2} = e^{k.5600} | L$
 $l_0 = \frac{1}{2} = k.5600$
 $l_0 = \frac{l_0}{5600}$
 $l_0 = \frac{l_0}{5600}$
 $l_0 = \frac{l_0}{5600}$

4)
$$0.7A_0 = A_0 e^{-0.0001238 t}$$

 $0.7 = e^{-0.0001238 t} \mid L$
 $L = -0.0001238 t$
 $t = -0.0001238 t$
 $t = -0.0001238 t$

9. (2pts) Roughly sketch angles of measure -70° and $\frac{3\pi}{5}$ radians.

10. (3pts) Mars makes one revolution in 1447 minutes. What is its angular speed in radians per second?


$$\frac{1 \text{ rev}}{1447 \text{ min}} = \frac{211 \text{ rad}}{1947.60 \text{ s}} = \frac{211}{86820} \text{ rad/s} = 7.237 \times 10^{-5} \text{ rad/s}$$

11. (5pts) In a right triangle, the leg adjacent to θ has length 7 and the hypothenuse has length 10. Find $\sin \theta$, $\cot \theta$ and $\sec \theta$.

$$4 = \sqrt{51} \qquad S = \frac{\sqrt{51}}{10}$$

$$Col \theta = \frac{7}{\sqrt{51}}$$

12. (4pts) You are running on a circular path of radius 100m. If you have swept an angle of 105°, what distance have you run? (Hint: convert to radians.)

Bonus (5pts) Let $f(x) = 17 + 4e^{x-3}$. Find the formula for the inverse of this function.

$$y = 17 + 4e^{x-3}$$
 $h_1 \frac{y-17}{4} = x-3$
 $y-17 = 4e^{x-3}$
 $h_2 \frac{y-17}{4} = x-3$
 $h_3 \frac{y-17}{4} = x-3$
 $h_4 \frac{y-17}{4} = x-3$
 $h_5 \frac{y-17}{4} = x-3$
 $h_6 \frac{y-17}{4} = x-3$