1. (5pts) Let $f(x) = x^2 + 3$ and g(x) = x - 1. Find the following:

$$f(2) = 2^2 + 3 = 7$$

$$g(3t+4) = 3t+4-1 = 3t+3$$

$$(f \cdot g)(x) = (x^2 + 3)(x - 1) = x^2 + 3 \times -3$$

- (10pts) Use the graph of the function f, below, to answer the following questions.
- a) What is f(3)?

- b) What are the x-intercepts?
- c) Where is the function increasing?
- d) Where does f have a local maximum? What is its value?
- e) What are the solutions of the equation f(x) = 3?
- f) What is the domain of the function?

- a) \$(3)=-3
- 1) x=0, x=5
- c) on (-4,-2) and (3,6)
- d) at x=-2 with value y=4
- e) Approx x=-3.2 ~ (x=-1
- 4) Doman = (-4,6]
- (4pts) The following are graphs of basic functions. Write the equation of the graph under each one.

- 4. (7pts) The quadratic function $f(x) = x^2 + 2x + 5$ is given. Do the following without using the calculator.
- a) Find the x-intercepts of its graph, if any.
- b) Find the vertex of the graph.
- c) Sketch the graph of the function.
- d) What is the range of the function?

a)
$$x^{\frac{1}{2}}2x+5=0$$

 $x=\frac{-2\pm\sqrt{4-4.5}}{2}=\frac{-2\pm\sqrt{-16}}{2}$
m. real solutions
so no $x-14$.

$$\ell_{i}$$
 $\chi = -\frac{2}{2 \cdot 1} = -1$
 $f = (-1)^{2} + 2(-1) + S = 4$

5. (4pts) Find the domain of the function $f(x) = \frac{3}{\sqrt{5-2x}}$

Must have

5-2x>0 (con't be zero
become it

5>2x is 14

5>x denominator)

$$\mathbb{D}:\left(-\infty,\frac{5}{2}\right)$$

6. (5pts) The graph of f(x) is drawn below. Find the graphs f(x+3) and -2f(x) and label all the relevant points.

- 7. (8pts) Consider the polynomial $P(x) = x^4 3x^3 + x + 2$. Answer the following (decimal answers should have accuracy to two decimal places).
- a) Find the x-intercepts of the graph and the y-intercept.
- b) P behaves like what function for large |x|?
- c) Find the smallest turning point of P.
- d) Sketch the graph of the function on paper. Make sure scale is marked and all features you found in a)-c) are indicated.

- 8. (7pts) The price p and the quantity x sold of a certain product obey the demand equation $p = -\frac{1}{3}x + 100$, $0 \le x \le 300$.
- a) Express the revenue R as a function of x.
- b) What quantity maximizes revenue? What is the maximal revenue?
- c) What price should the company charge to maximize revenue?

4)
$$R = x \cdot p = x \left(-\frac{1}{3}x + 100\right) = -\frac{1}{3}x^{3} + 100$$

=\$50

Bonus (5pts) The Crooncard company makes talking greeting cards. To wholesalers they charge \$1.25 per card for any number of cards up to 200. An order for more than 200 cards is priced as \$250 plus \$1.10 for every card in excess of 200.

- a) Write the piecewise-defined function that describes the price P as a function of the number of cards x bought.
- b) Sketch the graph of the function.

P(x)=
$$\begin{cases} 1.25 \times \text{ if } 0 \le x \le 200 \\ 250 + 1.10(x - 200) \text{ if } 200 \times x \end{cases}$$

