1. (4pts) Find the exact value of $\sin 15^{\circ}$. Do not use the calculator.
2. (7pts) Suppose $\sin \theta=\frac{2}{3}$ and $\frac{\pi}{2}<\theta<\pi$. Find the exact values (do not use the calculator) of:
a) $\cos 2 \theta$
b) $\sin \frac{\theta}{2}$.

Solve the following equations:
3. (4pts) $2 \cos \theta-\sqrt{3}=0$
4. $(6 \mathrm{pts}) \tan 2 \theta=1, \quad 0 \leq \theta<2 \pi$
5. (7pts) $2 \cos ^{2} \theta+3 \cos \theta-2=0$
6. $(7 \mathrm{pts}) \cos (2 \theta)+6 \sin ^{2} \theta=4$
7. (5pts) Use your calculator to solve $\sin \theta=0.67,0 \leq \theta<2 \pi$ with accuracy to two decimal places. A picture will help you.
8. (5 pts) Use the graphing feature of your calculator to solve the equation $x^{2}+x=\cos x$ with accuracy to two decimal places. Draw the graph here and indicate the solutions.
9. (5pts) Use known trigonometric identities (including the double-angle formulas) to establish the identity $\sin 4 \theta=4 \sin \theta \cos \theta\left(1-2 \sin ^{2} \theta\right)$.

Bonus (5pts) Find sin $\left[2 \arccos \left(-\frac{4}{7}\right)\right]$.

