1. (5pts) Find exact values of the following expressions. A picture may help you.

$$
\arcsin \frac{1}{2} \quad \arctan 1 \quad \arccos \left(-\frac{\sqrt{3}}{2}\right)
$$

2. (8pts) Find the exact values of the following expressions. A picture will be helpful for some of them.

$$
\sin \left[\arcsin \left(\frac{1}{7}\right)\right]
$$

$\arccos \left[\cos \left(-\frac{\pi}{3}\right)\right]$
$\arcsin \left[\sin \left(\frac{5 \pi}{8}\right)\right]$
3. $(4 \mathrm{pts})$ Compute the exact value of $\sin (\arctan 6)$. Use a picture.

Use basic trigonometric identities to establish the following identities:
4. (3pts) $\sin \theta \csc \theta-\cos ^{2} \theta=\sin ^{2} \theta$
5. $(4 \mathrm{pts}) \tan \theta(\sec \theta+\tan \theta)=\sec \theta(\sec \theta+\tan \theta)-1$
6. $(7 \mathrm{pts}) \frac{\cos \theta}{1+\sin \theta}+\frac{1+\sin \theta}{\cos \theta}=2 \sec \theta$
7. (6pts) Use addition formulas to find the exact values.
a) $\sin 75^{\circ}=$
b) $\cos \frac{5 \pi}{12} \cos \frac{7 \pi}{12}-\sin \frac{5 \pi}{12} \sin \frac{7 \pi}{12}=$

Use addition formulas to establish the following identities:
8. $(3 \mathrm{pts}) \tan (\theta+\pi)=\tan \theta$
9. $(4 \mathrm{pts}) \frac{\cos (\alpha+\beta)}{\cos \alpha \cos \beta}=1-\tan \alpha \tan \beta$
10. (6pts) Suppose that $\frac{\pi}{2}<\alpha<\pi$ and $-\frac{\pi}{2}<\beta<0$ are angles so that $\sin \alpha=\frac{1}{4}$ and $\sin \beta=-\frac{2}{5}$. Find the exact value of $\sin (\alpha-\beta)$.

Bonus (5pts)
a) Try to use the addition formula for tangent in order to establish the identity $\tan \left(\frac{\pi}{2}+\theta\right)=-\frac{1}{\tan \theta}$. What goes wrong?
b) Find another way to establish this identity.

