1. (4pts) Roughly sketch angles whose measures are:
70°
$\frac{3 \pi}{4}$
-405°
$\frac{5 \pi}{3}$
2. (3pts) Convert into the other angle measure (radians or degrees). Show how you computed your number.
$50^{\circ}=$
$\frac{2 \pi}{5}$ radians $=$
3. (2pts) Use your calculator to compute (pay attention to the mode you are in):
$\tan 17^{\circ}=$

$$
\sec \frac{\pi}{7}=
$$

4. (4pts) Compute the exact values (do not use the calculator):
$\sin 30^{\circ}+\cos 45^{\circ}=$
$\tan \frac{\pi}{3}-\cos ^{2} \frac{\pi}{4}=$
5. (5pts) In a right triangle, the leg adjacent to angle θ has length 2 and the hypothenuse has length 3 . Compute $\sin \theta, \csc \theta$ and $\tan \theta$.
6. (5pts) If θ is an acute angle and $\sin \theta=\frac{3}{7}$, find $\cot \theta, \sec \theta$ and $\cos \theta$.
7. (5pts) The point $(-4,3)$ is on the terminal side of the angle θ that is in standard position. Compute $\sin \theta, \cot \theta$ and $\sec \theta$.
8. (6pts) Use trigonometric identities in order to simplify the following expressions. Show all your steps. Do not use the calculator.
$\cos 70^{\circ} \cdot \csc 20^{\circ}=$
$\tan ^{2} \frac{\pi}{5}-\sec ^{2} \frac{\pi}{5}=$
$\tan 25^{\circ}-\frac{\sin 25^{\circ}}{\sin 65^{\circ}}=$
9. (5pts) Use the reference angle to compute the exact values of the following angles. Sketch the picture and do not use the calculator.

$$
\sin 135^{\circ}
$$

$$
\tan \frac{7 \pi}{6}
$$

10. (3pts) A wheel rotates 40 rounds per minute. Find the angular velocity of the wheel and express it in radians per second.
11. (4pts) A Ferris wheel of diameter 100 ft has rotated 40° between two stops. What is the distance (length of arc) that a point on the rim of the Ferris wheel has traveled?
12. (4pts) A water sprinkler sprays water over a distance of 20 ft while rotating through an angle of 100°. What area of lawn receives water?

Bonus (5pts) Consider a right triangle whose hypothenuse has length 1 and let θ be one of the acute angles in that triangle. The area of the triangle will depend on the size of θ.
a) Find the formula for the area of the triangle in terms of θ. (Hint: find the lengths of the legs first.)
b) Graph the function on your calculator and determine for which θ the area of the triangle is the greatest. What is the greatest possible area of the triangle?

