Numerical Analysis

MAT 542 - FALL 2010

Homework \# 9 Due November 19

1. Verify that

$$
x=(2 t+1) e^{t}
$$

is the solution to the following boundary value problem:

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}+x-(2 t-1) e^{t} \\
x(1)=3 e \quad x(2)=5 e^{2}
\end{array}\right.
$$

2. Verify that

$$
x=c_{1} e^{t}+c_{2} e^{-t}
$$

solves the boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x \\
x(0)=1 \quad x(1)=2
\end{array}\right.
$$

if appropriate values of c_{1} and c_{2} are chosen.
3. The boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=4(x-t), \quad \text { for } 0 \leq t \leq 1 \\
x(0)=0 \quad x(1)=2
\end{array}\right.
$$

has the solution

$$
x(t)=\frac{e^{2}}{e^{4}-1}\left(e^{2 t}-e^{-2 t}\right)+t
$$

Use the Linear Finite-Difference method to approximate the solution and compare the results to the actual solution. Use $h=\frac{1}{4}$.
4. The boundary value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}+2 x+\cos t, \quad \text { for } 0 \leq t \leq \frac{\pi}{2} \\
x(0)=-0.3 \quad x\left(\frac{\pi}{2}\right)=-0.1
\end{array}\right.
$$

has the solution

$$
x(t)=-\frac{1}{10}(\sin x+3 \cos x) .
$$

Use the Linear Finite-Difference method to approximate the solution and compare the results to the actual solution. Use $h=\frac{\pi}{8}$.

