Numerical Analysis

MAT 542 - FALL 2010

Homework \# 7 Due October 27

1. Turn the differential equation below into a system of first-order equations suitable for applying the Runge-Kutta method:

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=2 x^{\prime}+\log \left(x^{\prime \prime}\right)+\cos (x) \\
x(0)=1 \quad x^{\prime}(0)=-3 \quad x^{\prime \prime}(0)=5
\end{array}\right.
$$

$2 a)$. Assuming that a program is available for solving initial-value problems of the form

$$
\left\{\begin{array}{l}
\mathbf{X}^{\prime}=\mathbf{F}(t, \mathbf{X}) \\
\mathbf{X}(a)=\mathbf{S}, \quad \text { given }
\end{array}\right.
$$

how can it be used to solve the following differential equation?

$$
\left\{\begin{array}{l}
x^{\prime \prime \prime}=t+x+2 x^{\prime}+3 x^{\prime \prime} \\
x(1)=3 \quad x^{\prime}(1)=-7 \quad x^{\prime \prime}(1)=4
\end{array}\right.
$$

(b). How would this problem be solved if the initial conditions were $x(1)=$ $3, x^{\prime}(1)=-7$, and $x^{\prime \prime}(1)=0$?
3. Consider

$$
\left\{\begin{array}{l}
x^{\prime \prime}=x^{\prime}-x \\
x(0)=0 \quad x^{\prime}(0)=1
\end{array}\right.
$$

Determine the associated first-order system and its auxiliary initial conditions.
4. (G) Turn this pair of differential equations into a second order differential equation involving x alone:

$$
\left\{\begin{array}{l}
x^{\prime}=-x+a x y \\
y^{\prime}=3 y-x y
\end{array}\right.
$$

