## Numerical Analysis

## MAT 542 - FALL 2010

Homework \# 6 Due October 8

1. Put these differential equations into a form suitable for numerical solution by the Runge-Kutta method.
(a) $x+2 x x^{\prime}-x^{\prime}=0$
(b) $\log x^{\prime}=t^{2}-x^{2}$
(c) $\left(x^{\prime}\right)^{2}\left(1-t^{2}\right)=x$
(d) $x^{\prime}=t^{2}+t x^{\prime}-2 x x^{\prime}$
(e) $x^{\prime}=e^{t}+x^{\prime} \cos x+t^{2}$
2. Solve the differential equation

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=-t x^{2} \\
x(0)=2
\end{array}\right.
$$

at $t=-0.2$, correct to two decimal places, using one step of the Taylor series method of order 2 and one step of the Runge-Kutta method of order 2.
3. Consider the ordinary differential equation

$$
\left\{\begin{array}{l}
x^{\prime}=(t x)^{3}-\left(\frac{x}{t}\right)^{2} \\
x(1)=1
\end{array}\right.
$$

Take one step of the Taylor series method of order 2 with $h=0.1$ and then use the Runge-Kutta method of order 2 to recompute $x(1.1)$. Compare answers.
4. (G) Describe how the fourth-order Runge-Kutta method can be used to produce a table of values for the function

$$
f(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

at 100 equally spaced points in the unit interval. Hint: Find an appropriate initial-value problem whose solution is $f$.

