Numerical Analysis

MAT 542 - FALL 2010

Homework \# 4 Due September 22

1. Compute the eigenvalues and associated eigenvectors for the matrices below.

$$
\mathbf{A}=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right]
$$

2. Find all of the Gershgorin discs for the following matrices. Indicate the smallest region(s) containing all of the eigenvalues.

$$
\mathbf{A}=\left[\begin{array}{rrr}
3 & -1 & 1 \\
2 & 4 & -2 \\
3 & -1 & 9
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rrr}
3 & 1 & 2 \\
-1 & 4 & -1 \\
1 & -2 & 9
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 1 \\
-1 & -1 & 2
\end{array}\right]
$$

3. (Graduate) Consider the matrix A given below. Plot the Gershgorin discs in the complex plane for \mathbf{A} and \mathbf{A}^{T} as well as indicate the locations of the eigenvalues.

$$
\mathbf{A}=\left[\begin{array}{rrr}
4 & -\frac{1}{2} & 0 \\
\frac{3}{5} & 5 & -\frac{3}{5} \\
0 & \frac{1}{2} & 3
\end{array}\right]
$$

