Numerical Analysis

MAT 542 - FALL 2010

Homework \# 3 Due September 10

1. If $p(x)$ is the polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{r} x^{r}
$$

with non-negative coefficients $\left(a_{i} \geq 0, i=0,1, \ldots, r\right)$ and

$$
p(A)=a_{0} I+a_{1} A+a_{2} A^{2}+\ldots+a_{r} A^{r}
$$

show that

$$
\|p(A)\| \leq p(\|A\|)
$$

2. The Jacobi and Gauss-Seidel methods are used to solve

$$
\left[\begin{array}{rrr}
5 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right] x=\left[\begin{array}{l}
7 \\
4 \\
5
\end{array}\right]
$$

- In each case compute the iteration matrix and its spectral radius.
- Check whether the method converges if the starting solution vector is $x_{0}=$ [10 1001000$]^{T}$.
- Is there an easier way to check the convergence of the two methods?

3. Consider the positive definite matrix

$$
A=\left[\begin{array}{rrr}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]
$$

Let

$$
\mathbf{v}^{(1)}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}^{(2)}=\left[\begin{array}{r}
-\frac{3}{4} \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}^{(3)}=\left[\begin{array}{r}
-\frac{3}{7} \\
\frac{4}{7} \\
1
\end{array}\right] .
$$

- Is the set $\left\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \mathbf{v}^{(3)}\right\}$ an A-orthogonal (A-conjugate) set?
- For the system $A x=b$, where $b=[24,30,-24]^{T}$, find $x^{(2)}$ using the conjugate gradient method given the initial guess $x^{(0)}=\left[\begin{array}{lll}0, & 0 & 0\end{array}\right]^{T}$.

