Numerical Analysis

MAT 542 – FALL 2010

Homework # 1 Due August 27

1. Find $|| \cdot ||_{\infty}$, $|| \cdot ||_2$ and $|| \cdot ||_1$ for the following vectors:

(a)
$$x = \begin{bmatrix} 3, -4, 0, \frac{3}{2} \end{bmatrix}^T$$

(b) $x = [\sin k, \cos k, 2^k]^T$ for a fixed positive integer k.

2. Find $|| \cdot ||_{\infty}$ and $|| \cdot ||_1$ for the following matrix:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

3. The following linear system Ax = b has x as the actual solution and \tilde{x} as an approximate solution. Compute $||x - \tilde{x}||_{\infty}$ and $||A\tilde{x} - b||_{\infty}$.

$$\begin{cases} \frac{1}{2}x_1 + \frac{1}{3}x_2 = \frac{1}{63} \\ \frac{1}{3}x_1 + \frac{1}{4}x_2 = \frac{1}{168} \end{cases}$$

 $x = \begin{bmatrix} \frac{1}{7}, & -\frac{1}{6} \end{bmatrix}^T, \quad \tilde{x} = \begin{bmatrix} 0.142, & -0.166 \end{bmatrix}^T.$