Numerical Analysis

MAT 542 - FALL 2010

Homework \# 1 Due August 27

1. Find $\|\cdot\|_{\infty},\|\cdot\|_{2}$ and $\|\cdot\|_{1}$ for the following vectors:
(a) $x=\left[\begin{array}{lll}3, & -4, & 0 \\ \frac{3}{2}\end{array}\right]^{T}$
(b) $x=\left[\sin k, \cos k, 2^{k}\right]^{T}$ for a fixed positive integer k.
2. Find $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ for the following matrix:

$$
A=\left[\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

3. The following linear system $A x=b$ has x as the actual solution and \tilde{x} as an approximate solution. Compute $\|x-\tilde{x}\|_{\infty}$ and $\|A \tilde{x}-b\|_{\infty}$.

$$
\left\{\begin{array}{l}
\frac{1}{2} x_{1}+\frac{1}{3} x_{2}=\frac{1}{63} \\
\frac{1}{3} x_{1}+\frac{1}{4} x_{2}=\frac{1}{168}
\end{array}\right.
$$

$x=\left[\begin{array}{ll}\frac{1}{7}, & -\frac{1}{6}\end{array}\right]^{T}, \quad \tilde{x}=\left[\begin{array}{ll}0.142, & -0.166\end{array}\right]^{T}$.

