Mathematical Modeling – MAT 506/606 Fall 2013 Homework 4

Due date: October 2, 2013

1. (12 points) Fit different polynomial models to the data in the table below and select the best one. Explain how you determined which one is "best."

х	1.4	2.4	7.1	13.8	34.2	109.3	134
у	2.7	2.27	3.31	3.39	3.81	4.88	4.62

2. (8 points) [Graduate] The amount of a radioactive substance remaining after time t, is described by the exponential model $y(t) = Ce^{-kt}$ where C is the initial amount (the amount at time t = 0) and k is a constant. Suppose two radioactive substances A and B have constants $k_A = 0.03$ and $k_B = 0.05$. A mixture of these two substances contains C_A grams of A and C_B grams of B at time t = 0, both of which are unknown. The total amount of the mixture at time t is modeled by

$$y(t) = C_A e^{-0.03t} + C_B e^{-0.05t}$$
(1)

A researcher measures the total amount of the mixture at several times and records the data in the table below. Estimate the values of C_A and C_B by fitting a least-squares model of the form (1) to the data.

Time	5	6	7	8
Amount	8.8	8.6	8.2	7.9