Name: \qquad

1. What is the numerical value of the Composite Trapezoid rule applied to the reciprocal function $f(x)=x^{-1}$ using the points $1, \frac{4}{3}$, and 2 .
2. Compute the approximate value of $\int_{0}^{\pi / 4} x \sin x d x$ by using the Composite Trapezoid rule with three points. Then compare with the actual value of the integral.
3. If the Composite Trapezoid rule is used to compute $\int_{-1}^{2} \sin x d x$ with $h=0.01$, give a realistic bound on the error.
4. How large must n be if the Composite Trapezoid rule is being used to estimate $\int_{0}^{\pi} \sin x d x$ with error $\leq 10^{-12}$? Will the estimate be too big or too small?
5. Consider $\int_{1}^{2} \frac{d x}{x^{3}}$. What is the result of using the composite trapezoid rule with the partition points $1, \frac{3}{2}$, and 2 ?
6. We want to approximate $\int_{1}^{2} f(x) d x$ given the table of values. Compute an estimate by the Composite Trapezoid rule. Can upper and lower sums be computed from the given data?

x	1	$\frac{5}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	2
$\mathrm{f}(\mathrm{x})$	10	8	7	6	5

7. Compute $\int_{0}^{0.35} \frac{2}{x^{2}-4} d x$ by the basic Simpson's Rule. Compare with the true solution.
8. Find an approximate value of $\int_{1}^{2} x^{-1} d x$ using the basic Simpson's Rule with uniform spacing. Give a bound on the error.
9. Find an approximate value of $\int_{-2}^{2} x^{3} e^{x} d x$ using the Composite Simpson's Rule with uniform spacing with $n=4$.
10. Find the constants c_{0}, c_{1} and x_{1} so that the quadrature formula

$$
\int_{0}^{1} f(x) d x \approx c_{0} f(0)+c_{1} f\left(x_{1}\right)
$$

gives exact results for all polynomials of degree at most 2 .
11. Approximate

$$
\int_{0}^{2} e^{-x^{2}} d x
$$

using the three point Gaussian Quadrature formula

$$
\int_{-1}^{1} f(x) d x \approx \frac{5}{9} f\left(-\sqrt{\frac{3}{5}}\right)+\frac{8}{9} f(0)+\frac{5}{9} f\left(\sqrt{\frac{3}{5}}\right) .
$$

